Automatic Graphical User Interface Form Generation
Using Template Haskell

Gracjan Polak*, Janusz Jarosz**

Department of Computer Science
University of Science and Technology in Krakow

Abstract

This paper presents AutoGUI, a Template Haskell library for automatic form genera-
tion. A form is a part of graphical user interface (GUI) restricted to displaying a value
and allowing the user to modify it and then either accept changes or abandon them.
The library is built on top of medium-level GUI library wxHaskell. The Template
Haskell and Haskell type system allow the forms to be built fully automatically, but
manual intervention is not excluded.

1 INTRODUCTION

In many programs, some of the graphical user interface parts can be considered
forms: they show a set of values and allow the user to update them. For example
the dialogs Settings, Properties or Info are most likely forms in many applications.
In our meaning of this word, forms do not only present values to the user, they also
allow modification. Once required changes are made, the user can accept new data
or refute it. In any way this is treated as an atomic action; no intermediate data is
ever seen. Forms are fairly common GUI (graphics user interface) elements and
provide clean and intuitive way of data presentation and input.

In this paper we will use the definition of a form from [1]. A form is a GUI
part, residing somewhere within a dialog with OK and Cancel buttons, which is
only able to display and alter a certain value. When the dialog appears, the form
has an initial value which is provided by its environment; subsequently the user
can read and alter this value; at the end, the user closes the dialog with one of the
buttons, and the form passes the final value back to the environment.

Manual form creation is inherently very tedious work. A large amount of code
is written just to convert values between internal and screen representations. A lot
of boilerplate code is spent on appearance problems like positioning, layout and
shape. The structure of the data is typically quite hard to reflect well in presenta-
tion. Of course this presents application maintaince problems in the event of data
type changes. Programs typically contain many dialogue forms so easing this part
of development can bring serious benefits.

*gpolak @agh.edu.pl
**jjarosz@agh.edu.pl

As research conducted by Adobe shows, GUI boilerplate code can amount up
to 30% of total code in serious, enterprise level applications. Optimizing program-
ming effort in this area can have a large impact on overall project cost reduction.
This is the main motivation of many libraries and frameworks, including our work
presented here.

As an example, the following screenshot presents the configuration dialog of
an archetypical Internet browser:

=10l |

BrowszerConfig

I =
higtonSize 50 -

allowCookies W
allave awaScript [

useProxyS erver p|W3CEChE.prDH}|.nEt |'IDEID ﬂ
=1
cacheSizeMp 190 =1
cacheCleanup I.-’-'-.fterElneWeek d
ak | Cancel

The above dialogue box was fully automatically generated using AutoGUI.
All the user has to do is to declare the type of configuration data and issue the
Template Haskell instanceAutoForm command to generate all appropriate classes
and instances.

$(instanceAutoForm " BrowserConfig)

This paper describes AutoGUI, an automatic GUI generation library. It is built
on top of wxHaskell[4] graphics interface library, but general ideas presented could
be equally well used in another setting.

We take special care to use as much information as available in Haskell source
code, including semantic part, which is not always written explicitly, but can be
inferred from usage context. This happens when polymorphic data structures come
into play.

What follows is a step by step introduction of concepts present in the language
with its mapping to screen controls. First, we show the basic organization of the
library, then go on with atomic controls, simple structural types like tuples, option-
als and enumerations, lastly we show how to tackle user defined disjoint unions
and record types. Then implementation details are presented. We end with related
work, conclusions and future directions.

2 REPRESENTATION DETAILS

The functionality in AutoGUI library resolves around one type class
AutoFormClass. The types declared as instances of this class are expected to

have on screen representation, present values to the user and take interactive in-
put. When (and if) the user accepts changes, a new value is read and returned as a
dialogue result.

The main AutoGUI type class is defined as follows:

class AutoFormClass a

where
autoForm ::Maybe a — > — initial value
Window b — > — parent window
10 (AutoForm a) — result form

Instances of AutoFormClass are all those data types that have screen represen-
tation and can be used in forms. The function autoForm can be hand written or
autogenerated. Many basic types are custom instances of AutoFormClass. This
functionality is internal to the library and is already implemented in the package.

What is AutoFrom a?? It is a parametrized data type that contains a screen rep-
resentation of values of type a. It is a record type; its fields have the information
necessary to compose controls on screen to form larger structures and to read value
entered by the user.

Basically, the record is declared as:

data AutoForm a =AutoForm
{ af -layout ::Layout
, af valueio ::10 a
, af _vertical ::Bool

}

The meaning of the fields is as follows:

e The af layout field contains a reference to wxWindows Layout data, which
is used to compose controls in window.

e The af vertical boolean flag indicates when it is better to lay out them ver-
tically or horizontally. The framework decides using its value (among other
things) if controls should be stacked below each other or make a row. This
flag is aesthetically meaningful.

e The most important field is af _valueio. This is the IO action, that reads form
value from controls when the user accepts changes. In case of basic controls,
it just reads their values and converts them to appropriate types as necessary.
Composite types need more treatment; in such case values are read from
subparts and then composed into the final value. This mechanism is treated
in the latter part of this paper.

TABLE 1. Basic types

=1
Integer 1000 =l
String el
Bool v

2.1 Primitive values

Many of the data types defined in Haskell should be treated atomically by the Au-
toGUI framework. This includes not only basic types like Integer, Double, Bool.
Some structures, like String for example, are also treated atomically by AutoGUI
library. Those are represented as native controls in graphical interface. The wx-
Haskell library has text input field for String values, spin control for Int, check box
for Bool. Table 1 has screen shots of these controls. Of course, more can be added
by deriving AutoFormClass and implementing autoForm function.

Direct mapping from a data type to a screen control does not require Template
Haskell facilities: standard Haskell type classes are enough!.

2.2 Optional values (Maybe)

The first extension problem we tackle is optional input control. Optional values in
Haskell are modeled with Maybe a data type where a is the type parameter of value
that may be present or absent. A Just a models a present value, otherwise Nothing.

data Maybe a = Just a | Nothing

Certain values are meaningful only when some feature is enabled. When such
a situation happens, the Maybe data type is a very natural model with Nothing
representing the disabled state and Just a when feature is enabled and has specified
parameters. The representation of an optional value is quite obvious: a check box
with a set of additional controls. But there are two behavioral possibilities:

e When the check box is disabled, controls are put into the disabled state,
typically grayed out.

e When the check box is disabled, controls are hidden.

In any case, input in the control is allowed only when the check box is checked.
We have chosen the second way as we thought it is more clear to the user. ”Dis-
appearing controls” can confuse users as they are probably going to look for them
somewhere else. Contrary, disabled controls paired with check boxes clearly indi-
cate how features are enabled.

Haskell98 is not enough, undecidable instances are required. As we already use the Glasgow
Haskell specific extension, we do not think this is any serious problem.

Consider the following code and its representation in two states: enabled and
disabled:

maybelnt :: Maybe Int
maybelnt = Nothing

Autol S =TS) Autol ~1al x|
2o =L =
ok | Cancel | ok | Cancel |

Optional values seem to be a quite common construct. Clean presentation is
important and we claim that we have achieved this goal.

2.3 Tuples

Tuples are aggregate data types that consist of many values. Tuple elements are
identified by their position in tuple definition. The simplest example is a pair, that
has two components. The number of elements in a tuple is unlimited > and, unlike
in the case of lists, it is reflected in the type of a tuple. Elements can have different
types, independent of types of other elements. In Haskell tuples are written inside
parentheses with elements separated with commas. Almost the same syntax applies
to tuple values and tuple types.
Consider the following example:

intString :: (Int,String)
intString = (123,”abc”)

AutoFor _ioix
||123 ﬂ Ial:u:

ok | Cancel |

Tuple represents a row of values, here Integer and a String. There is no relation
between them, any integer can be paired with any string. Editing such a value
in form means editing each of its components independently. AutoGUI simply
composes together edit controls for each value.

There are some presentation issues involved here. For simple values the most
natural composition is linear, side by side in a row. If any of fields are more compli-
cated, all controls would be stacked above each other and form a vertical column.
This is the point where af _vertical field of AutoForm record comes into play.

2.4 Product types

Product types, from the perspective of AutoGUI library, are very similar to tuples.
They are composed of none, one or many components. The important feature

2 Actually, there is a practical limit. As of now for GHC it is 66.

is that they are named, so the AutoGUI library can make use of this additional
information. See this simple example:

data NamedPoint = NamedPoint Int Int String
namedPoint = NamedPoint 57" Wawel”

AutoForm 1ol x|

Named F‘oirrtl 5 ill I.? ill I‘-".n'awel

ok | Cancel |

For screen presentation purposes the product type is treated in the same way as
a tuple of the same arity, but with a name. If all fields are of horizontal kind, the
whole type is represented as a row of controls with the name of the type in front of
them. Otherwise, a vertical column is created. Such a representation leans itself to
extension for disjoint union types, which we cover later, in Section 2.6.

2.5 Records

Tuples and product types have one drawback: their compounds are unnamed.
When there are not too many values, their meaning can be obvious from context.
For other cases, Haskell provides a record syntax. This is in many respects equiv-
alent to products, except that fields are named. The AutoGUI tries to use this
additional information and presents field names to the user. Consider the following
example:

data NamedPoint =NamedPoint
{x:Int
, ¥ Int
, name :: String

}

namedPoint =NamedPoint
{x=5

yy=T1,
name = "Wawel”

MNamed Pairt
x |5

name I‘.".n'awel

ok | Cancel |

From Haskell’s point of view this does not present any significant advantages,
but AutoGUI could generate a much more readable form.

2.6 Disjoint union types

The disjoint union types representation is the main achievement of this library. We
built on the knowledge from [1], but choose a bit different path.

A variable of disjoint union type can have one of many enumerated values.
Here we have to choose one of two possible representations:

e As a group of radio buttons. This is the way chosen by authors of Disjoint
Forms paper.

e As adrop down list of options.

We argue for the second representation. There are some reasons for this. First
of all, this is compatible with product type representation where we have only one
constructor. In such case, only the static text control containing only the constructor
name is created on front of the list of controls representing parameters. When there
are more constructors, the static text control is changed to a drop down list control.

Parameters to disjoint union data type constructors are used as alternative
views. At any point in time, only fields of selected constructor are visible. De-
pending on the current selection only relevant configuration options are shown to
the user, all others are stacked under them and hidden. Important from the usability
point of view is that such a presentation spares screen real estate and allows users
to concentrate on important input fields.

In the below example, we see two alternative representations of complex num-
bers:

data ComplexNumber =Cartesian { x :: Int,y :: Int }
| Polar { radius :: Int, angle :: Int }

o o x| [_lnix
= . e - |

2 = radius [0 =

ok | Cancel | ok | Cancel |

The drop down list is responsible for constructor selection. In the above ex-
ample the user can choose one of the two available complex number representa-
tions. In any case she is presented only with the controls relevant to the selected
constructor. Such layered design reduces screen clutter and adds to clean human
interaction.

3 IMPLEMENTATION DETAILS

The goal of the library was to use as much information present in types as possible
and require minimal manual intervention. Generated forms are allowed to look a bit
rough but their behavior should be pleasant enough for most users and considered
relevant for prototyping purposes. The logic of the forms should directly follow
from the structure of the types fo data for which the dialogue is constructed. All
user visible texts should be directly derived from names of types, data and fields.

To achieve our goals, first we turned to data type generic programming as de-
fined in papers [9] and [6]. The recursive definitions of folds defined over types
represented data structures very well. Therefore we could create forms, but only
for data presentation, because changes would require data creation and informa-
tion about data construction could not be obtained from data type generics. But
even if this would be possible, there is still one missing point: neither Haskell nor
data type generics provide enough information to know about type names, data
constructor names and record field names, which are essential for fully automatic
form generation. Introspection facilities are just not there yet.

Finally we decided to use Template Haskell as, although being a bit heavy, it
provides all the things we needed to complete our project.

The simple data types were implemented manually as instances of
AutoFormClass. Our library provides an implementation for Bool, Int and String,
but nothing prevents users from creating instances for their own types by hand. For
example some applications may treat color picker control as one of the basic ones.
If there is a proper instance of AutoFormClass declared then such control could be
embedded in autogenerated forms without any problems.

The Maybe data type is also implemented manually, as it needed a special
treatment in screen representation. Instances for all other types are autogenerated.

3.1 Tuples

The AutoFormClass instances for tuples are autogenerated. We create instances for
tuples that depend on all elements’ types to be also instances of AutoFormClass. In
the pseudo-Haskell code this could be written as:

instance(AutoFormClass al, ...,AutoFormClass an)
=> AutoFormClass (al, ...,an)
where
autoForm = ... (autogenerated)

All the users have to do is to issue Template Haskell command to create an
appropriate instance for n-arity tuple:

$(instanceAutoFormTuple n)

The AutoG U library comes with pregenerated AutoFormClass instances for tu-
ples with up to 10 elements. If needed, more instances can be generated in the user

code.

While implementing the instances for tuples we found the Idiom [7] idiom very
useful. The screen representation of each element of the tuple must be generated
in the IO monad, but otherwise those elements are independent of each other.

3.2 Enumerations, disjoint unions, products and records

The most interesting part of our library is that the autogenerated instances of
AutoFormClass for all user types falling into any of the categories from the title of
this section are created using one Template Haskell invocation. This single macro
is able to create forms for enumerations, products, records and disjoint unions, pro-
vided that the types of all the used fields are also instances of AutoFormClass. See
the following code fragment:

data UserData = (constructors)
$(instanceAutoForm " UserData)

generates AutoFormClass instance:

instance AutoFormClass UserData
where
autoForm = (autogenerated)

The introspection facilities offered by Template Haskell are put to good work
here. The AutoFormClass instance creation algorithm is quite obvious and easy. It
iterates over all constructors, for each one constructs appropriate form for it’s para-
meters or fields in case of record constructor is generated. Those forms are stacked
on top of each other so that, at any given time, only one is visible. The constructor
is selected with a drop down list control; when there is only one constructor, the
drop down list is changed into a static text control, as there is no point in the drop
down with only one option.

4 RELATED WORK

Simplifying form creation has been tackled by many researchers and developers
with varying degrees of success.

Most of graphical database front ends provide means to create default record
views. This is accomplished with information available in database, which includes
field name, field type and some other information dependent on a specific database
engine used, relations with other fields, records and tables.

Ruby on Rails [2] is one of such frameworks. Based on database description,
the Rails generate default view, which is a HTML form. Although it does lack on
the artistical side, all of expected functionality is already in place. These forms
present database content to the user, but not only. Typical operations like record

addition, deletion or update are available. Database integrity is automatically en-
sured. Table navigation presented as HTML links is generated whenever possible.
Default (autogenerated) forms are very helpful in an early development stage but
with the wonders of cascading style sheets technology they could fulfill the needs
of a final product. Possibilities are bound by SQL database and the amount of
information available in dynamically typed Ruby language.

As already noted a GUI code can amount up to 30% of total code in serious
applications. This is a main motivation for Adobe Open Source Library (ASL),
which, in the concept of its authors, should simplify GUI form creation. ASL has
much more features than AutoGUI, but it has its additional costs. Forms are speci-
fied in two languages, one for presentation, second for logic and interaction, called
Eve and Adam, respectively. Form is populated and after user acceptance values
are read in an untyped fashion with the help of an intermediate name-value map.
Showing such a dialogue requires a specialised interpreter. For many programs this
is overkill.

On the academic side of problem we would like to mention Disjoint Forms[1]
as an important step in the direction of simplifing the form creation. The authors
of this paper managed to decouple presentation from content at a very high level.
A vast amount of boilerplate code is removed. All that remains is mapping from
values to controls, which itself is still very tedious and Disjoint Forms leave this
problem unsolved. This was the main motivation for our work.

5 CONCLUSION AND FUTURE DIRECTIONS

We consider the AutoGUI library as a serious step forward to make Haskell graphi-
cal user interfaces more programmer friendly. Although generated forms look a bit
rough, they are very usable. Form follows a rigid specification and this guarantees
coherence between the internal data and a screen representation. Their expected
use is mostly in the application prototyping, but we think that many final programs
have less user friendly forms in the production releases.

Our main contribution is a mapping from the Haskell type space to GUI con-
trols using as much information as possible.

Future directions of our research include creating controls for set like types,
for example Data.List, Data.Set or Data.Map. The natural representation for them
seems to be a list control. As there are many unanswered questions in this area as of
the current version of AutoGUI library does not support automatic form generation
for such types.

Another possible extension direction is support for recursive data structures.
The current AutoGUI engine generates all controls in the first place, then fills them
with values. This works only for data structures with bounded depth. In the other
case the library would try to create an infinite tree of windows and this of course
fails. A possible extension of this library is to create windows only on demand.
Research paths here remain open.

6 ACKNOWLEDGMENTS

We would like to thank Wlodzimierz Funika for encouragement and the editorial
work. Also the Haskell’s community was very helpful in solving many of our
problems. Thank you for answering our emails!

REFERENCES

[1]

(2]
(3]

[4]

S. Evers, PM. Achten, and M.J. Plasmeijer. Disjoint forms in graphical user interfaces.
In Loidl [5].

David Heinemeier Hansson. Ruby on rails.

Simon Peyton Jones, editor. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, December 2002.

Daan Leijen. wxhaskell, a portable and concise gui library for haskell. In ACM SIG-
PLAN Haskell Workshop (HW’04). ACM Press, September 2004.

H.W. Loidl, editor. Proceedings of the Fifth Symposium on Trends in Functional Pro-
gramming (TFP 2004). Ludwig Maximilians Universitit Miinchen, 2005.

Ian Lynagh. Template haskell: A report from the field. May 2003.

Conor McBride and Ross Paterson. Functional pearl. applicative programming with
effects.

T. Sheard and S. Jones. Template meta-programming for haskell. 2002.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In
Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages 1-16.
ACM Press, October 2002.

