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Abstract

This paper presents the semantics of a new primitive for parallel composition in a
parallel functional language called Minimally Synchronous Parallel ML (MSPML).
MSPML is a parallel functional language based on a small number of primitives on
a parallel data structure. The programs are written like usual ML programs by us-
ing this small set of functions. MSPML is deterministic and without deadlock. The
execution time of the programs can be estimated. It has an asynchronous semantics,
i.e. without global synchronisation barrier. The new parallel composition primitive
allows to write parallel divide-and-conquer algorithms which are common in the lit-
erature.
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1 INTRODUCTION

Very often concurrent programming is used to write massively parallel algorithms
by combining a sequential programming language (usually C or Fortran) with a
message passing communication library such as MPI [34] or PVM [20]. This ap-
proach is indeed extremely general because it allows to define both the parallel
algorithm and all the details of its realisation by communication protocols. Never-
theless the development of such programs is difficult because of non-determinism
and deadlocks. This difficulty is confirmed by the high complexity of the asso-
ciated validation problems [1]. As the semantics of a concurrent program is in
general complicated, its execution time (related to the operational semantics) can
hardly be predicted. This can hinder the portability of performances.

We developed libraries for the Objective Caml [24, 15] language to ease the
writing, performance prediction and validation of parallel programs. BSML or
Bulk Synchronous Parallel ML [27], whose semantics is given by a confluent ex-
tension of the λ-calculus [2, 28], allows to implement Bulk Synchronous Parallel
(BSP) [37, 33, 9] algorithms using a small set of primitives on a polymorphic data-
structure. The complexity of BSML programs proofs [18] is identical to that of the
sequential case [8].



For efficiency reasons, it is not possible to use BSML to program meta-computers
(clusters of parallel machines). We designed a two-tiered model and language
called Departmental Meta-computing ML or DMML [19]: each node is seen as
a BSP machine and programmed using BSML and an additional level, minimally
synchronous, is used for the coordination. The concepts introduced for this level
can also be used independently in a parallel language. We call it Minimally Syn-
chronous Parallel ML or MSPML. The primitives of MSPML are identical or sim-
ilar to BSML ones but the execution model of the two languages are different. In
BSML communications are followed by a synchronisation barrier involving all the
processors of the parallel machine. In MSPML synchronisations occur only among
processors involved in exchanges of data.

MSPML is currently flat: it is not possible to divide the machine and use in-
dependently two subsets of the processors to evaluate two expressions. There are
many parallel algorithms in the literature which are parallel divide-and-conquer al-
gorithms. It is possible to flatten and implement them in MSPML but the flatten
programs are far less readable and more difficult to design than the original parallel
recursive programs.

In this paper we present the semantics of a new primitive for parallel composi-
tion in MSPML, called juxtaposition, which allows to directly implement divide-
and-conquer parallel algorithms. In section 2 we present informally flat MSPML
and the juxtaposition primitive as well as the underlying communication mecha-
nism. In section 3 we present a semantics which formalise the execution model of
MSPML with parallel composition. We end with related work (section 4), conclu-
sions and future work (section 5).

2 MSPML: INFORMAL PRESENTATION

In this section, a brief presentation of the MPM model and the core MSPML lan-
guage without parallel composition juxtaposition is given. Then the new parallel
composition primitive and the underlying mechanisms are presented.

2.1 The Message Passing Machine Model

The Message Passing Machine or MPM model [32] proposes an execution and
cost model for programs run on distributed memory parallel machines. A MPM
program is a sequence of m-steps. At each m-step, each processor performs a com-
putation phase followed by a communication phase. During the communication
phase, the processors concerned by the communication exchange the data the need
for the next m-step. There is no synchronisation barriers but only synchronisation
between processors which exchange data. For a given processor i and a m-step s,
Ωs,i is the set containing i and the processors, called incoming partners, which send
messages to processor i.

The parallel machine is characterised by the following parameters: p the num-
ber of processors, g the communication gap, and L the network latency.



The execution time of a MPM program is bounded by :

Ψ = max{ΦR, j| j ∈ {0,1, . . . , p−1}}

Φs,i is inductively defined by :
{

Φ1,i = max{w1, j| j ∈Ω1,i}+(g×h1,i +L)

Φs,i = max{Φs−1, j+ws−1, j| j ∈Ωs,i}+(g×hs,i+L)

where hs,i = max{h+
s,i,h

−
s,i} for i ∈ {0, . . . , p− 1} and s ∈ {2, . . . ,R} where i ∈

{0, . . . , p−1} and s ∈ {2, . . . ,R} where R is the number of m-steps in the program
and ws,i and hs,i are respectively, the local computation time of processor i during
the m-step s and hs,i = max{h+

s,i,h
−
s,i} where h+

s,i (respectively h−s,i) is the number of
the received words (respectively sent words) by the processor i during the m-step
s. The experiences done show that this model is suited to MSPML [26].

2.2 The Core Library

The MSPML library is based on the following primitives:

p : unit→ int
g : unit→ float
l : unit→ float
mkpar : (int→ α )→ α par
apply : ( α → β ) par→ α par→ β par
get : α par→ int par→ α par
mget : (int→ α ) par→ (int→ bool) par→ (int→ α option) par
at : α par→ int→ α

They give access to the parameters of the parallel machine. In particular, the
function p return the static number of processors of the parallel machine. This
value do not change during the execution, as long as the parallel composition is not
introduced.

There is also a polymorphic abstract type α par which represents the type
of the parallel vectors composed of p expressions of type α, one expression per
processor. The nesting of parallel expressions is not allowed and can be avoided
by a type system.

The parallel constructors operate on parallel vectors. These parallel vectors are
created by the primitive mkpar. The expression (mkpar f) is a parallel or global
expression. For example, mkpar(fun i→ i) will be evaluated to the parallel vector
〈 0 , . . . , p−1 〉.

In the MPM model, an algorithm is written as a combination of asynchronous
local computation phases and communication phases. The asynchronous phases
are programed with mkpar and apply.

The expression apply(mkpar f )(mkpare) will be evaluated to ( f i)(e i) at
processor i. The communication phases are programmed using get and mget. The



semantics of get, where % is the modulo, is given by:

get〈 v0 , . . . , vp−1 〉〈 i0 , . . . , ip−1 〉= 〈 vi0%p , . . . , vip−1%p 〉

The function mget is a generalisation of mget. It allows to have different data
send to different processors during one m-step. The complete language contains
also a global conditional which is necessary to take into account data computed
locally for the global control. For the sake of conciseness these two primitives are
omitted here.

2.3 Costs

The execution time of a MSPML program is represented by a cost vector of execu-
tion time on each processor: 〈 c0 , . . . , cp−1 〉.

If the evaluation of a ML expression e outside a mkpar, require time w then
its evaluation as a MSPML program adds w to each component of the cost vector:
〈c0 +w, . . . ,cp−1 +w〉.

The evaluation of a mkpar expression requires wi at processor i, the time re-
quired to evaluate ( f i). For apply time required is that of the evaluation of the
arguments giving the vectors 〈 f0 , . . . , fp−1 〉 and 〈 v0 , . . . , vp−1 〉, then for proces-
sor i the time wi required for the evaluation of ( fi vi).

The execution time of a communication primitive get, if the vector of costs
after the evaluation of its arguments is 〈 c0 , . . . , cp−1 〉, is given by the cost vector
〈 c′0 , . . . , c′p−1 〉. It is defined by:

• if 〈 v0 , . . . , vp−1 〉 is the first argument, #vi is the size of value vi,

• if 〈 i0 , . . . , ip−1 〉 is the second argument of the get,

• if Ωk is the set of the incoming partners of processor k:

Ωk = { j|i j = k}∪{k}

• then c′k = max{ci|i ∈Ωk}+max{∑ j∈Ωk\{k} #v j,#v jk if jk 6= k}×g+L.

2.4 Examples

We present here some examples which form a part of the standard MSPML library.
The standard library of MSPML contains functions which are defined using

only the primitives. For example, the function replicate creates a parallel vector
which contains the same value everywhere. The primitive apply can be used only
in the case the functions of the parallel vector of functions take only one argument.
The function apply2 is required to handle functions with two arguments.

(∗ val replicate: α→ α par ∗)
let replicate x = mkpar(fun pid→ x)



(∗ val apply2:( α → β→ γ ) par→ α par→ β par→ γ par ∗)
let apply2 f v1 v2 = apply(apply f v1) v2

It is also very convenient to apply the same sequential function to all the com-
ponents of a parallel vector. That can be done by using the functions parfun. The
difference between them is the number of their arguments:

(∗ val parfun: ( α → β )par→ α par→ β par ∗)
let parfun f v = apply (replicate f) v
(∗ val parfun2: ( α → β→ γ ) par→ α par→ β par→ γ par ∗)
let parfun2 f v1 v2 = apply(parfun f v1) v2

The semantics of the total exchange is given by:

totex〈 v0 , . . . , vp−1 〉= 〈 f , . . . , f , . . . , f 〉 where ∀i.(0≤ i < p−1)⇒ ( f i) = vi

The code is presented below where noSome is a function which removes the
constructor Some and compose is the functional composition:

(∗ val totex: α par→ (int→ α ) par ∗)
let totex vv = parfun (compose noSome)

(mget (parfun(fun v i→ v)vv) (replicate(fun i→ true)))

Its parallel cost is (p−1)×s×g+L, where s is the size in words of the biggest
value v held by a processor. From this function we can obtain a total exchange func-
tion which returns a parallel vector of lists instead of a parallel vector of functions
where procs() = [0;. . . ;p()-1]:

(∗ val totex list: α par→ α list par ∗)
let totex list v = parfun2 List.map (totex v) (replicate(procs()))

The set of bcast functions broadcast the value of a parallel vector at a given
processor to all the other processor. Their semantics is given by:

bcast 〈 v0 , . . . , vp−1 〉 r = 〈 vr%p , . . . , vr%p 〉

The bcast direct function is one possible implementation, using only one m-
step. It could be written as follows:

(∗ bcast direct: int→ α par→ α par ∗)
let bcast direct root vv = get vv (replicate root)

Its parallel cost is (p−1)× s×g + L, where s is the size in words of the value vn

at processor n. Another possible implementation is the broadcast function which is
evaluated in log p m-steps (figure 1)

The standard library of MSPML contains a collection of such functions to ease
the writing of parallel programs. Thus, its same to write MSPML programs or
programs with data-parallel skeletons. But if the MSPML standard library does
not provide the required function it is possible to write new skeletons as higher
order functions, using the primitives only.



let bcast logp root vv =
let newi i = natmod (i+(p())−root) (p()) in
let from n = mkpar(fun i→ let j = newi i in

if (n/2<=j)&&(j<n) then i−(n/2) else i) in
let rec aux n vv = if n<1 then vv else get (aux (n/2) vv) (from n)
in aux (p()) vv

FIGURE 1. Broadcast Function

2.5 A New Primitive for Parallel Composition

The spatial parallel composition, called juxtaposition, allows to divide the par-
allel machine into two sub-machines. It allows the evaluation of two indepen-
dent parallel programs on the same machine. The evaluation of the expression
(juxta m E1 E2) proceeds as follows. The m first processors evaluate the expres-
sion E1 and the p−m remainder evaluate E2. These p−m processors are how-
ever renamed, the processor m becoming 0 and the processor (p− 1) becoming
(p−1)−m. The juxtaposition does not modify the MPM cost model.

The result of evaluation of the parallel juxtaposition is:

juxta m 〈 v0 , . . . , vm−1 〉 〈 v′0 , . . . , v′p−1−m 〉= 〈 v0 , . . . , vm−1,v
′
0 , . . . , v′p−1−m 〉

In order to avoid the evaluation of the parallel arguments before the call to the
juxtaposition, the type of the parallel composition is:

juxta: int→ (unit→ α par)→ (unit→ α par)→ α par.

The following program is a divide-to-conquer version for prefix sum. Its se-
mantics is:

scan ⊕ 〈 v0 , . . . , vp−1 〉 = 〈 v0 , . . . , v0⊕ v1⊕ . . .⊕ vp−1 〉

where ⊕ is an associative binary operation.

let rec scan op vec =
if p()=1 then vec else let mid = p()/2 in
let vec’ =juxta mid (fun()→ scan op vec)(fun()→ scan op vec)
and msg vec = get vec (mkpar(fun i→ if(i<mid) then i else mid−1))
and parop =parfun2 (fun x y→ match x with None→ y| Some v→ op v y)in

parop (msg vec’) vec’

The network is divided into two parts and the function scan is recursively ap-
plied to the two parts. The value at the last processor of the first part is broadcast to
all the processors of the second part. Then this value and the local values computed
by the recursive call are combined with the operation op on each processor of the
second part.



2.6 The Communication Mechanism

The asynchronous nature of MSPML led us to design a communication mechanism
which relies on the storage of values to be potentially requested by other processors
in a data structure called communication environment. Each processor has its own
communication environment and a value is stored per m-step.

During the execution of a MSPML program, for each process i, the system
has a variable mstepi containing an integer indicating the current m-steps. For
flat MSPML, all the processors perform the same number of m-steps. When the
expression (get vv vi), is evaluated at a given process i:

1. mstepi is increased by one;

2. The value that this process holds in parallel vector vv is stored with the value
of mstepi in the communication environment;

3. the value j that this process holds in parallel vector vi is the process number
from which the process i wants to receive a value. Thus process i sends a
request to process j: it asks for the value at m-step mstepi. When process j
receives the request (threads are dedicated to handle requests, so the work of
process j is not interrupted by the request), there are two cases:

• mstep j ≥mstepi : it means that process j has already reached the same
m-step than process i. Thus process j looks in its communication en-
vironment for the value associated with m-step mstepi and sends it to
process i;

• mstep j < mstepi : nothing can be done until process j reaches the same
m-step than process i.

If i = j, the third step is not performed.
Without juxtaposition all processes execute the same number of m-steps. It

is not the case when juxtaposition is introduced. For example, in the following
expression:

let this = mkpar(fun i→ i) in juxta 2 (get this this) this

the two first processors of the network are the only ones to increase their m-step
counters by evaluating the get primitive. Thus we cannot rely on a simple number-
ing of m-steps by naturals in order to exchange correctly messages among proces-
sors.

To distinguish the various messages from different sub-machines we introduce
the following m-step numbering:

step ::= (n,m) | step.R(n,m) | step.L(n,m) where n and m are naturals.

Each time a processor calls the juxtaposition primitive, its m-step counter grows:
L (resp. R) indicates that the processor belongs to the sub-machine which evalu-
ates the first (resp. second) parallel expression of a juxtaposition. The natural n



is a counter used to know how many m-steps (use of get, mget or at) have been
performed in the given sub-network.

When the call to the juxtaposition ends the last pair of the m-step counter and
the sub-machine indicator are removed. But it is possible to have successive non-
nested uses of the juxtaposition:

let e1 = (juxta m . . . . . .) in let e2 =(juxta m . . . . . .) in let e3 = (juxta m . . . . . .) in

Thus if we count only the number of m-steps in a give call to the juxtaposition, two
values of two successive non-nest calls to the juxtaposition could have the same
m-step counter, which would lead to an incorrect mechanism. Thus the second
natural in the pairs (n,m) gives the number of successive non-nested calls to the
juxtaposition in the given sub-network.

The figure 2 illustrates the m-steps numbering on an example.

machine with p processors

0

step=(n,1).R(0,0).L(0,0)

step=(n,1).L(0,0)

step=(n,1).R(0,0).L(5,0)

juxta m’ e e’

0 P−m−m’−1

P−m−1

m’−10 0

0 m−1

step = (n,1).R(0,0)

step=(n,1).R(0,0).R(0,0)

m’−1 0

P−m−m’−1

step=(n,1).R(0,0).R(3,0)

0
step = (n,1).R(0,0)

P−m−1

juxta m e e’

step = (n,0)

 0 P − 1

FIGURE 2. M-steps Numbering

3 DISTRIBUTED SEMANTICS OF MSPML WITH JUXTAPOSITION

Parallel languages have usually two models: a programming model which is the
semantics given to the programmer and an execution model which is the semantics
of what really happens during the execution of a program on a parallel machine. In



the case of MSPML, in the informal semantics we presented a MSPML program
as a sequential program on a parallel data structure. The execution of a MSPML
program on an actual parallel machine is in fact the execution of p sequential com-
municating programs on p processors. The parallel data structure does not exist: it
is just a logical view of p values on p different processors.

MSPML has two formal semantics. The first one formalises the programming
model and is a big steps semantics. We omit it here. In this semantics the parallel
primitives seem to be synchronous. A MSPML program is seen like a classical
Objective Caml sequential program with the use from time to time of operations
on parallel vectors. From this point of view, the MSPML programming model
is quite similar to that of BSML, the essential difference being the parallel costs
associated to each primitive.

The second semantics formalises the execution model. A MSPML program is
in this case as a SPMD program: it is in fact p copies of the same program, one by
processor of the parallel machine, which works only on one component (a slice) of
parallel vectors. These copies communicate by message passing. This semantics
provides a specification for the implementation of MSPML.

3.1 Syntax

Here we do not distinguish local and global expressions in the same way it is done
in the BSλ-calculus, i.e. in the syntax. We just distinguish local and global vari-
ables. A typing system [6], omitted here, gives the distinction between local and
global expressions. In addition, this system avoids parallel nesting.

e ::= x | c | op
| let x : τ in e | fun x : τ→ e | (e e)
| (e,e) | if e then e else e | fst e
| snd e | mkpar e | apply e e
| get e e | request e e | juxta e e e
| if e at e then e else e | −→e | ‖ed‖

FIGURE 3. MSPML Syntax

We found in the syntax presented in figure 3: the classical functional expres-
sions, the parallel operations presented in the previous section, juxta e e e the
parallel juxtaposition, −→e the local expression of the parallel vector at the proces-
sor which contains it, request e e the request for a value from a given processor
(first argument) at a given m-step (second argument), and ‖ed‖ indicates that the
expression e is evaluated in a sub-machine.



3.2 Evaluation

The distributed evaluation is defined here in two steps:

• local reduction (performed by one process i) ⇀i
p ;

• global reduction ⇀i of distributed terms which allows the evaluation of
communication requests (for get, mget at).

The values of the local reduction are as follows:

v ::= fun x : τ→ e | c | op | (v, v) | −→v

request and ‖vd‖ are not a values.
Locally, with the parallel juxtaposition, the number of processors and proces-

sors identifiers are not any more static values. To manage this dynamism each
processor contains two stacks: Ep and Epid which contain respectively on top of
the stack the number of processors of the current network and the identifier of the
processor in the current network. The environment Ep (resp.Epid) is initialised by
the number of processors (resp. absolute processor identifier).

The rules have the form (e,s,Ec,Ep,Epid) ⇀i
p (e′,s′,E ′

c,E ′
p,E ′

pid) that we
read as follows:

“At processor hd(Epid)
1 in the network of hd(Ep) processors, whose abso-

lute pid is i, and at the m-step s the expression e in the communication en-
vironment Ec is reduced locally to the expression e′ with possible changes
in the m-step counter, the stacks and the communication environment E ′

c”.

The local reduction is divided in three groups of rules: contexts and the rule
of context, the functional reduction which corresponds to a classical semantics of
a sequential functional programming language and the reduction of the parallel
operations specific to MSPML.

The head reduction cannot be applied in any context. We follow a weak call-
by-value strategy. Therefore, the contexts 3.2 define the order of evaluation of the
arguments for each term. The contexts force the evaluation of the arguments (from
left to right) before allowing the reduction. The contexts are applied by using the
context rule:

(ei,si,Eci ,Epi ,Epidi) ⇀i
p (e′i,s

′
i,E ′

ci
,E ′

pi
,E ′

pidi
)

(Γ(ei),si,Eci ,Epi ,Epidi) ⇀i
p (Γ(e′i),s

′
i,E ′

ci
,E ′

pi
,E ′

pidi
)

Rules of functional reduction, change only the first component of the tuple.
The full set of rules is presented in [6]. We present some rules as examples. For
binding we have:

((let x : τ = v in e),s,Ec,Ep,Epid) ⇀i
p (e[x← v],s,Ec,Ep,Epid)

1the environment Epid (resp. Ep) is a stack that top is given by hd(Epid) (resp. hd(Ep))



Γ ::= [] | Γ e | v Γ
| fst Γ | snd Γ | let x : τ = Γ in e

|
−→
Γ | if Γ then e else e | mkparΓ

| applyΓe | applyvΓ | getΓe
| getvΓ | ifΓate theneelsee | ifvatΓ theneelsee
| juxta Γ e e | ‖Γ‖

FIGURE 4. Evaluation contexts of the distributed semantics

The following rule allows the creation of the enumerated parallel vectors. (
−→
v i′) is

the part of the parallel enumerated vector at processor i.

(mkparv,s,Ec,Ep,Epid) ⇀i
p ((

−→
v i′),s,Ec,Ep,Epid) with i′ = hd(Epid)

The apply rule is a classical parallel rule which performs the point-wise parallel
application of a parallel vector of functions to a parallel vector of arguments:

(apply−→v1
−→v2 ,s,Ec,Ep,Epid) ⇀i

p (−−→v1 v2,s,Ec,Ep,Epid)

The communication rules concern the primitive get and at. The rules are similar
and we present the rules for the get primitive only. When a get evaluated, the value
of the first argument is stored in the communication environment together with the
current value of m-step counter. Then the get becomes a request, if the destination
processor is not the source processor:

(get−→v
−→
j ,s,Ec,Ep,Epid) ⇀i

p (
−−−−−−−−→
requests′ j′,s′,(s′,v) :: Ec,Ep,Epid)

if hd(Epid) 6= j and s′ = incc(s) with j′ = (i−hd(Epid))+( j%hd(Ep))

The name of destination processor j in the current sub-network is translated into
the absolute name j′ of this processor in the whole parallel machine.

If the destination and source processors are the same, then the first argument
of the get is simply put the communication environment together with the current
value of the m-step counter:

(get−→v
−→
i ,s,Ec,Ep,Epid) ⇀i

p (−→v , incc(s),(incc(s),v) :: Ec,Ep,Epid)

The incrementation of the m-step counter incc is defined by :
{

incc((n,m)) = (n+1,m)

incc(s.D(n,m)) = s.D(n+1,m) where D = L or D = R

To do the exchanges, the evaluation must be considered globally and not locally,
which is done by the global rules.



The evaluation of juxta m e1 e2, the current machine is divided into two sub-
machines. If the processor identifier in the sub-machine is less than the first argu-
ment of the juxtaposition we have:

(juxta m e1 e2,s,Ec,Ep,Epid) ⇀i
p

(

‖e1‖, inc j(s).L(0,0),Ec,m :: Ep, pid :: Epid

)

with pid = hd(Epid) and if pid < m

inc j has a same effect of incc but on the second component of the pair.
If the processor identifier in the current machine is greater or equal to m, a

similar rule is performed with the following changes: L in the m-step counter value
is replaced by R, e1 by e2, m by p−m, and hd(Epid) by hd(Epid)−m.

When the evaluation of the expression inside ‖ · ‖ is done, the following rule
restores the parameters of the super machine:

(‖v‖,s.D(n,m),Ec, p′ :: Ep, pid :: Epid) ⇀
i
p (v,s,Ec,Ep,Epid) where D ∈ {L,R}

The global reduction→ is a relation on distributed vectors:

〈〈(e0,s0,E c
0 ,E p

0 ,E pid
0 ), . . . , (ep−1,sp−1,E c

p−1,E p
p−1,E pid

p−1)〉〉

The global reduction is defined by two rules. The first one allows a local re-
duction to be considered at the global level:

(ei,si,E c
i ,E p

i ,E pid
i ) ⇀i

p (ei,si,E
c
i ,E

p
i ,E

pid
i )

〈〈(e0,s0,E c
0 ,E p

0 ,E pid
0 ), . . . ,(ei,si,E c

i ,E p
i ,E pid

i ), . . . ,(ep−1,sp−1,E c
p−1,E p

p−1,E pid
p−1)〉〉

→

〈〈(e0,s0,E c
0 ,E p

0 ,E pid
0 ), . . . ,(ei,si,E

c
i ,E

p
i ,E

pid
i ), . . . ,(ep−1,sp−1,E c

p−1,E p
p−1,E pid

p−1)〉〉

The second rule allows the exchange of messages between two processors (the
reduction of a request). This rules formalises the third phase of the communication
mechanism (section 2.6):

(ei = Γ[requestn j]) and (n,v) ∈ Ec j

〈〈(e0,s0,E c
0 ,E p

0 ,E pid
0 ), . . . ,(ei,si,E c

i ,E p
i ,E pid

i ), . . . ,(ep−1,sp−1,E c
p−1,E p

p−1,E pid
p−1)〉〉

→

〈〈(e0,s0,E c
0 ,E p

0 ,E pid
0 ), . . . ,(Γ[v],si,E c

i ,E p
i ,E pid

i ), . . . ,(ep−1,sp−1,E c
p−1,E p

p−1,E pid
p−1)〉〉

The confluence of the semantics of MSPML with juxtaposition, the correctness
of the new numbering of m-steps and the safety of the typing are proved. The
theorems, propositions, and proofs are given in detail in [7].

4 RELATED WORK

[3] showed that NESL [11, 10] is more effective when the vectors size is constant.
Even if it isn’t the case, the majority of the operations of NESL can be implemented
in MSPML. In particular the nested lists can be implemented like in [23]. From



this point of view MSPML can seem lower level than NESL. But MSPML offers a
high level functions whereas it is not the case for NESL.

The parallel functional language Caml-Flight [14] is based on the vague mech-
anism. The primitive sync is used to indicate which processors can exchange mes-
sages when the get primitive is used. This get is very different from the our : it is
a question here of asking the distant evaluation of an expression. This mechanism
is more complex than that of MSPML and there is no purely functional semantics
of Caml-Flight [17]. Moreover programs Caml-Flight are SPMD and thus more
difficult to write and read that MSPML programs. The type system used to avoid
incorrect nested parallelism is also complex [36].

[31, 30] describes the mechanism of the structural clocks which allows the
execution of data-parallel programs written in a small imperative language SPMD.
The difficulty within this framework is that the number of communication phases
can be different on each processor because there is a parallel composition. Our
m-step numbering is thus similar to structural clocks.

[35] presents another way to divide-and-conquer in the framework of an object-
oriented language. There is no formal semantics and no implementation from now
on. The proposed operation is similar to our BSML parallel superposition [25],
several BSP threads use the whole network. The same author advocates in [29]
a new extension of the BSP model in order to ease the programming of divide-
and-conquer BSP algorithms. It adds another level to the BSP model with new
parameters to describe the parallel machine.

[38] is an algorithmic skeletons language based on the BSP model and offers
divide-and-conquer skeletons. Nevertheless, the cost model is not really the BSP
model but the D-BSP model [16] which allows subset synchronisation. We follow
[21] to reject such a possibility in BSML.

In the BSPlib library [22] subset synchronisation is not allowed as explained
in [33]. The PUB library [12] is another implementation of the BSPlib standard
proposal. It offers additional features with respect to the standard which follows
the BSP* model [4] and the D-BSP model [16]. Minimum spanning trees nested
BSP algorithms [13] have been implemented using these features.

5 CONCLUSIONS AND FUTURE WORK

Adding the juxtaposition to MSPML allows to write easily divide-and-conquer par-
allel programs. An implementation was developed, taking the semantics presented
in this article as a specification. It remains to experiment the new possibilities
offered by the juxtaposition, as well as to validate the cost model.

The presented semantics is a semantics of the execution. It is a semantics for
the implementer of MSPML. This is not the semantics which is presented to the
programmer. The latter called the programming model formalises the informal
presentation of MSPML given in section 2. In order to guarantee the correctness of
our system, we have to prove the equivalence of the programming model and the



execution model.
In the current implementation, the management of the communication environ-

ments requires a global synchronisation from time to time. In the case of MSPML
without parallel composition, a new mechanism was proposed which removes these
global synchronisations [5]. We should adapt it for MSPML with juxtaposition.
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[32] J. L. Roda, C. Rodrı́guez, D. G. Morales, and F. Almeida. Predicting the execution
time of message passing models. Concurrency: Practice and Experience, 11(9):461–
477, 1999.

[33] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

[34] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

[35] A. Tiskin. A New Way to Divide and Conquer. Parallel Processing Letters, (4),
2001.

[36] J. Vachon. Une analyse statique pour le contrôle des effets de bords en Caml-Flight
beta. In C. Queinnec, V. V. Donzeau-Gouge, and P. Weis, editors, JFLA, number 13.
INRIA, Janvier 1995.

[37] L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM,
33(8):103, 1990.

[38] A. Zavanella. Skeletons and BSP : Performance Portability for Parallel Program-
ming. PhD thesis, Universita degli studi di Pisa, 1999.


