Wellfounded and Extensional Ordinals in Homotopy Type Theory

Nicolai Kraus

joint work with
Fredrik Nordvall Forsberg and Chuangjie Xu
(arXiv: Connecting Constructive Notions of Ordinals in Homotopy Type Theory)

Developments in Computer Science, Budapest/online, 17-19 June 2021
(1) What are ordinals?

Simple answer: Numbers for counting/ordering, e.g.

$$
\begin{aligned}
& 0,1,2,3, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega \cdot 2, \omega \cdot 2+1, \\
& \ldots \omega^{2}, \ldots, \omega^{\omega}, \ldots, \omega^{\omega^{\omega}}, \\
& = \\
& \omega+\omega \\
& \omega \cdot \omega
\end{aligned}
$$

Caveat: $\boldsymbol{N} \uplus \operatorname{Bod} \simeq \mathbb{N}, \omega \neq \omega+2$
Better answer: Sets with an order $<$ which is

- transitive $x<y \rightarrow y<z \rightarrow x<z$
trellfounded every sequence $x_{0}>x_{1}>x_{2}>\ldots$.. terminates
- and trichotomous $\forall x y, \quad x<y \uplus x=y \uplus y<x$
$-\ldots$ or extensional (instead of trichotomous) $(\forall 2 .(z<x<-2<y)) \rightarrow x=y$
(2) What are ordinals good for?

(3) How can we define ordinals in type theory?

Problem/feature of a constructive setting: different definition differ.
In our work (with Fred and Chuangjie), we study:

- Cantor normal forms de cidable
- Brouwertrees partially decidable
- wellfounded and extensional orders. undecidable

(3A) Cantor normal forms

Motivation: $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}$ with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$

Definition

- Let \mathcal{T} be the type of unlabeled binary trees:
leaf $\rightarrow 0$

node $\rightarrow \omega^{-}+-: \mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathcal{T}$
- Let $<$ be the lexicographical order on
- Define isCnf (α) to express $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$.

We write Cnf $: \equiv \Sigma(t: \mathcal{T})$.isCnf (t) for the type of Cantor normal forms.
(3B.1) Brouwer trees (a.k.a. Brouwer ordinal trees)
How about this inductive type \mathcal{O} of Brouwer trees?

$$
\begin{aligned}
\text { zero : } & \mathcal{O} \quad \text { succ: }: \mathcal{O} \rightarrow \mathcal{O} \quad \text { sup }:(\mathbb{N} \rightarrow \mathcal{O}) \rightarrow 0 \\
& \sup (0,1,2,3, \ldots) \\
\neq & \sup (1,2,3, \ldots)
\end{aligned}
$$

(3B.2) Brouwer trees quotient inductive-inductively
data Brw where

$$
\begin{aligned}
& \text { zero : Brw } \\
& \text { succ : Brw } \rightarrow \text { Brw } \\
& \text { limit : }(f: \mathbb{N} \rightarrow B r w) \rightarrow\{f \uparrow: \text { increasing } f\} \rightarrow B r w
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { limit } f\left\{\mathrm{ff}_{\uparrow}\right\} \equiv \operatorname{limit} g\{g \uparrow\} \quad \forall i, \exists_{j} \cdot f_{i} \leq g_{j} \\
\text { isSet } \mathrm{Brw}^{\prime}
\end{array}
\end{aligned}
$$

data _s_ where

$$
\begin{aligned}
& \text { s-zērō : } \forall\{x\} \rightarrow \text { zero } \leq x \\
& \leq \text {-trans : } \forall\{x y z\} \rightarrow x \leq y \rightarrow y \leq z \rightarrow x \leq z \\
& \text { s-succ-mono : } \forall\{x y\} \rightarrow x \leq y \rightarrow \operatorname{succ} x \leq \operatorname{succ} y \\
& \text { s-cocone : } \forall\{x\} f(f \uparrow k\} \rightarrow(x \leq f k) \rightarrow(x \leq l i m i t f f(f \uparrow\}) \\
& \leq- \text { limiting : } \forall \mathrm{f}\{\mathrm{f} \uparrow \mathrm{x}\} \rightarrow((\mathrm{k}: \mathbb{N}) \rightarrow \mathrm{f} \mathrm{k} \leq \mathrm{x}) \rightarrow \operatorname{limit} \mathrm{f}\{\mathrm{f} \uparrow\} \leq \mathrm{x} \\
& \text { s-trunc } \quad: \forall\{x y\} \rightarrow i s P r o p(x \leq y)
\end{aligned}
$$

(3C.1) Extensional wellfounded orders
Definition
The type Ord consists of pairs ($X:$ Type, $\prec: X \rightarrow X \rightarrow$ Prop) such that:
\prec is transitive
$x \prec y \rightarrow y \prec z \rightarrow x \prec z ;$
\prec is extensional

- elements with the same \prec-predecessors are equal;
\prec is wellfounded
- every element is accessible, where x is accessible if every $y \prec x$ is accessible.
data $A_{c c}: A \rightarrow$ Type where $a c c:(a: A) \rightarrow(\forall b a a, A c c) \rightarrow A c c a$
α is wellfounded if $\forall a . A c c a$
(3C.2) Extensional wellfounded orders
Let $\left(X, \prec_{X}\right),\left(Y, \prec_{Y}\right):$ Ord.
$X \leq Y$ is:
- a monotone function $f: X \rightarrow Y$
- such that: if $y \prec_{Y} f x$, then there is $x_{0} \prec_{X} x$ such that $f x_{0}=y$.

Such an f is a simulation.
For $y: Y$, define $Y_{/ y}: \equiv \Sigma\left(y^{\prime}: Y\right) \cdot y^{\prime} \prec y$.
$X<Y$ is:

- a simulation $f: X \leq Y$
- such that there is $y: Y$ and f factors through $X \simeq Y_{/ y}$.
$f: X<Y$ is a bounded simulation.
(4) Abstract setting

What do Conf, Bro, Ord have to do with each other?
Why are they "types of ordinals"?
Assume we have a set A with relations $<, \leq$ such that:
< is transitive and irreflexive;

- \leq is transitive, reflexive, and antisymmetric;
- $(<) \subset(\leq)$;
$(<0 \leq) \leq(<) . \quad(x<y)-7(y \leq z) \rightarrow(x<z)$
Caveat: $(x \leqslant y) \rightarrow(y<2) \rightarrow(x<2)$
is not constructively true for Ord
(4.1) Abstract setting: first properties

When is $(A,<, \leq)$ a "type of ordinals"?
First properties:

- A is set, $<$ and \leq valued in props
- $<$ is wellfounded
- < and \leq are extensional
(4.2) Abstract setting: Zero, successor, limit "classification" Obvious definitions:
$a: A$ is zero if $\forall b . a \leq b$.
a is a successor of b if $a>b$ and $\forall x>b . x \geq a$.
The successor is strong if b is the predecessor of a.
a is a supremum of $f: \mathbb{N} \rightarrow A$ if $\forall i . f_{i} \leq a$ and $\left(\forall i . f_{i} \leq x\right) \rightarrow a \leq x$. If f is increasing, we say that a is its limit.
"Concrete" results: 1) Cnf, Brw, Ord uniquely have zero and strong successor.

2) Brw, Ord uniquely have limits.
3) For Cnf, Brw, we can decide in which case we are.
"Abstract" result: \quad is-zero $(a) \uplus$ is-str-suc $(a) \uplus$ is-limit $(a) \quad$ is a proposition.

(4.3) Abstract arithmetic: addition

Definition

$(A,<, \leq)$ has addition if we have a function $+: A \rightarrow A \rightarrow A$ such that:

$$
\begin{aligned}
& \text { is-zero }(a) \rightarrow c+a=c \\
& a \text { is-suc-of } b \rightarrow d \text { is-suc-of }(c+b) \rightarrow c+a=d \\
& a \text { is-lim-of } f \rightarrow b \text { is-sup-of }\left(\lambda i . c+f_{i}\right) \rightarrow c+a=b \quad c+U f=\bigsqcup c+f_{c}
\end{aligned}
$$

$(A,<, \leq)$ has unique addition if there is exactly one function + with these properties.

Concrete result: Cnf and Brw have unique addition.
Ord has addition (Q : is it unique?).

(4.4) Abstract arithmetic: multiplication

Assume that $(A,<, \leq)$ has addition.

Definition

$(A,<, \leq)$ has multiplication if we have $\cdot: A \rightarrow A \rightarrow A$ such that:

$$
\begin{aligned}
& \text { is-zero }(a) \rightarrow c \cdot a=a \\
& a \text { is-suc-of } b \rightarrow c \cdot a=c \cdot b+c \\
& a \text { is-lim-of } f \rightarrow b \text { is-sup-of }\left(\lambda i . c \cdot f_{i}\right) \rightarrow c \cdot a=b
\end{aligned}
$$

$(A,<, \leq)$ has unique multiplication if it has unique addition and there is exactly one function • with the above properties.

Concrete result: Cnf and Brw have unique multiplication. Ord has multiplication (Q: is it unique?).

(4.5) Abstract arithmetic: exponentation

Assume that $(A,<, \leq)$ has addition and multiplication.

Definition

A has exponentation with base c if there is $\exp (c,-): A \rightarrow A$ such that:

$$
\begin{aligned}
& \text { is-zero }(b) \rightarrow a \text { is-suc-of } b \rightarrow \exp (c, b)=a \\
& a \text { is-suc-of } b \rightarrow \exp (c, a)=\exp (c, b) \cdot c \\
& a \text { is-lim-of } f \rightarrow \neg \operatorname{is-zero}(c) \rightarrow b \text { is-sup-of }\left(\exp \left(c, f_{i}\right)\right) \rightarrow \exp (c, a)=b \\
& a \text { is-lim-of } f \rightarrow \operatorname{is-zero}(c) \rightarrow \exp (c, a)=c
\end{aligned}
$$

A has unique exponentation with base c if it has unique addition and multiplication, and if $\exp (c,-)$ is unique.

Concrete result: Cnf and Brw have unique exponentation (with base ω). (Q: Can you show a constructive taboo if Ord has the same?)
(5) Connections between the notions

