
Two-Level Type Theory (2LTT)

- What is it, what can it do,
and does Agda need it?

Nicolai Kraus

AIM XXXIII, 20 Oct 2020

(Thanks + apologies to Jesper!)



What is the problem?
There are “schematic” definitions that cannot be internalised.
E.g.: In Agda, we can do 1-categories, 2-cat’s, 3-cat’s, . . . ,

27-cat’s, . . . , 2020-cat’s, . . .
[Remark: (_, 1)-cat’s (Capriotti-K’18), general ones wip]

However, we cannot do n-categories.

How can this happen?
For numerals, expressions normalise and type-check. Example:

suc-lemma : (n : N) ! 1 + n ⌘ n+ 1

suc-lemma(0) ⌘ refl

suc-lemma(17) ⌘ refl

(n : N) ! suc-lemma(n) ⌘ refl



What is the problem?
There are “schematic” definitions that cannot be internalised.
E.g.: In Agda, we can do 1-categories, 2-cat’s, 3-cat’s, . . . ,

27-cat’s, . . . , 2020-cat’s, . . .
[Remark: (_, 1)-cat’s (Capriotti-K’18), general ones wip]

However, we cannot do n-categories.

How can this happen?
For numerals, expressions normalise and type-check. Example:

suc-lemma : (n : N) ! 1 + n ⌘ n+ 1

suc-lemma(0) ⌘ refl

suc-lemma(17) ⌘ refl

(n : N) ! suc-lemma(n) ⌘ refl



When was this noticed?
It doesn’t happen with K (and funext?).

The HoTT community knows the problem of defining
semisimplicial types since 2012:

A0 : U
A1 : A0 ! A0 ! U
A2 : {x y z : A0} ! (A1 x y) ! (A1 y z) ! (A1 x z) ! U
A3 : {x y z w : A0} ! {f : A1 x y} ! {g : A1 y z} ! {h : A1 z w}

! {i : A1 x z} ! {j : A1 y w} ! {k : A1 xw}
! (a : A2 f g i) ! (b : A2 f j k) ! (c : A2 i h k)

! (d : A2 g h j) ! U

Unsolvable (??) task: Define the type of tuples (A0, . . . , An).

F : IN→ set,



What else is affected?
(My stuff: coherently constant functions, 1-CwF’s.)

MLTT (without K) is based on 1-groupoids/categories. If we
want to formalise a math concept (beyond the set-level), there
are two cases:

(1) It can be expressed using only finitely many levels of the
1-categorical structure.
) Lucky! Often elegant (cf. synthetic homotopy theory).

Example: (1-) Groups as pointed connected types.
(2) No such “shortcut”.

) Can’t do it! Example: (1-) Monoids (?)

[Why even care about (2)? Constructions of (2) can have
implications for (1). Plus: Not having (2) is unnatural in
terms of models.]



Other descriptions
• Very dependent function types

by Jason J. Hickey, “Formal Objects in Type Theory Using
Very Dependent Types”, 1996.
{f | x : A ! B}
Type of codomain at a : A depends on f(y) for y < a.
Does this make sense for MLTT?

• “(potentially) infinite record types”



Idea of 2LTT
Since we can do [placeholder] for every external natural
number, we add a “type” that behaves like the external natural
numbers (original Voevodsky 2013, HTS: reuse N).

New type: Ns (strict natural numbers)
To make this work, we also need1: ⌘s (strict equality)

If a type does not contain Ns or ⌘s, it corresponds to a
“normal” type in “normal” MLTT/HoTT;
more useable: close by strict iso ; fibrant types

Elimination principles of fibrant types only work with fibrant
families, to avoid

x ⌘ y $ x ⌘s y

1During the AIM, ⌘ is the internal identity type.

←



Conservativity
Does adding Ns, ⌘s change the theory (from the point of view
of fibrant types)?

HoTT/MLTT ,! 2LTT

A weak version of conservativity can be found in
Two-Level Type Theory and Applications,
Annenkov-Capriotti-K-Sattler 2019.

= MITT

+ us
+ Is



Wish list
2LTT consists essentially of two parallel theories
– but maybe this is a useful simplification:

• types can carry a flag which indicates fibrancy

• all “normal” types of Agda are fibrant
• if A 's B and A fibrant, then B fibrant;

can be proved but should be inferred when possible
• when declaring an inductive type, one can choose whether

it is fibrant (but only if all indices are fibrant!)
• elimination/pattern matching of fibrant types only

allowed for fibrant families
• Conservativity: Fibrant types (in fibrant contexts) can be

translated to “normal” types with “normal” inhabitants
(not sure about theory and/or practice of this!)


