Functions out of Higher Truncations CSL'15 Berlin

Nicolai Kraus*

on joint work with **Paolo Capriotti** and **Andrea Vezzosi**

*FP Lab, University of Nottingham; supported by EPSRC grant EP/M016994/1

08/09/15

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Topic

In Homotopy Type Theory

(i.e. dependent type theory with Σ , Π , =, univalence, HITs), how can we

Construct functions $\|\mathbf{A}\|_n \to \mathbf{B}$

if B is (n + 1)-truncated?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Topic

In Homotopy Type Theory $\checkmark \checkmark (clear, l hope)$ (does not matter) (i.e. dependent type theory with Σ , Π , =, univalence, HITs), how can we

> **Construct functions** $\|\mathbf{A}\|_n \rightarrow \mathbf{B}$? (will explain) if B is (n + 1)-truncated?

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reminder: Identity/Equality Types in Martin-Löf's Dependent Type Theory

- * If A is a type and x, y : A, then x = y is also a type
 (a.k.a. x =_A y or Id_A(x, y))
- * Does **UIP** hold? I.e. if p, q : x = y, do we automatically get p = q?
- * Hofmann-Streicher 1994: No! [LICS Test of Time Award 2014]
- * Types can have non-trivial higher structure (fist step of birth of Homotopy Type Theory)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction: Truncation Levels and Truncations

- * "being *n*-truncated" is a property of types [due to VV]
- * intuition: "trivial on levels $\geq n$ "
- * Def:
 - 1. A is (-2)-truncated iff $A \simeq$ **Unit**
 - 2. A is (n + 1)-truncated iff x = y is *n*-truncated $(\forall x, y : A)$
- * basic lemma: A is *n*-truncated \Rightarrow A is (n+1)-truncated
- * examples:

. . .

(-2)-truncated a.k.a. contractible: Unit
(-1)-truncated a.k.a. propositional: Ø
0-truncated a.k.a. set, satisfying UIP: N, Bool, ...
1-truncated: universe of sets

Introduction: Truncation Levels and Truncations

- * $(\|\mathbf{A}\|_n \to \mathbf{B}) \simeq (\mathbf{A} \to \mathbf{B})$ if *B* is *n*-truncated
- * intuition: ||-||_n "truncates" a type (thus "loses information"!), have |-|: A → ||A||_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Back to the topic of this talk

So, how to get a map $||A||_n \rightarrow B$ in general? Or: When does $f : A \rightarrow B$ factor through $||A||_n$?

- * always, if B is n-truncated
- * this paper:

Special cases of the result

This was already known [K-Escardó-Coquand-Altenkirch 2014].

Special cases of the result

Special case n = 0If B is 1-truncated: $f : A \rightarrow B$ factors through $||A||_0$ iff $ap_f : (x = y) \rightarrow (f(x) = f(y))$ is weakly constant.

Known from the *Rezk completion* [Ahrens-Kapulkin-Shulman 2014].

Special cases of the result

Special case n = 1

If *B* is 2-truncated:

$$f: A \rightarrow B$$
 factors through $||A||_1$
iff

f introduces trivial maps on all second homotopy groups / loop spaces: $ap_f^2 : \Omega^2(A, a) \to \Omega^2(B, f(a))$ weakly constant.

This (and all other cases) are new.

Two proofs

Two proofs of our result:

- * first proof:
 - given $f' : ||A||_n \to B$, we do get $f : A \to B$ which is trivial on all (n + 1)-st loop spaces
 - if A is *n*-connected, this map is an equivalence
 - piece together maps on the "*n*-connected components" of *A*
- * second proof:
 - construct a higher inductive type $H^{A,n}$
 - show that $H^{A,n}$ has a suitable elimination principle
 - show $H^{A,n} \simeq ||A||_n$

Overview: Open and Solved Cases

Solved in: [K-Escardó-Coquand-Altenkirch 2014], [Ahrens-Kapulkin-Shulman 2014], [K 2015], [HERE]