Functions out of Higher Truncations CSL'15 Berlin

Nicolai Kraus ${ }^{\star}$
on joint work with
Paolo Capriotti and Andrea Vezzosi

*FP Lab, University of Nottingham; supported by EPSRC grant EP/M016994/1

08/09/15

Topic

In Homotopy Type Theory
(i.e. dependent type theory with Σ, Π, =, univalence, HITs), how can we

Construct functions $\|\mathbf{A}\|_{n} \rightarrow \mathbf{B}$

if B is $(n+1)$-truncated?

Topic

In Homotopy Type Theory (clear, I hope)
(does not matter)
(i.e. dependent type theory with Σ, Π, $=$, univalence, HITs), how can we

Construct functions $\|\mathbf{A}\|_{n} \rightarrow \mathbf{B}$
? ? (will explain)
if B is $(n+1)$-truncated?

Reminder: Identity/Equality Types in

 Martin-Löf's Dependent Type Theory\star If \mathbf{A} is a type and $\mathbf{x}, \mathbf{y}: \mathbf{A}$, then $\mathbf{x}=\mathbf{y}$ is also a type (a.k.a. $x=A$ y or $\operatorname{ld}_{A}(x, y)$)

* Does UIP hold? I.e. if $p, q: x=y$, do we automatically get $p=q$?
* Hofmann-Streicher 1994: No! [LICS Test of Time Award 2014]
* Types can have non-trivial higher structure (fist step of birth of Homotopy Type Theory)

Introduction: Truncation Levels and Truncations

* "being n-truncated" is a property of types [due to VV]
* intuition: "trivial on levels $\geq n$ "
* Def:

1. A is (-2)-truncated iff $A \simeq$ Unit
2. A is $(n+1)$-truncated iff $x=y$ is n-truncated ($\forall x, y: A$)

* basic lemma: A is n-truncated $\Rightarrow A$ is $(n+1)$-truncated
* examples:
(-2)-truncated a.k.a. contractible: Unit (-1)-truncated a.k.a. propositional: \varnothing 0 -truncated a.k.a. set, satisfying UIP: \mathbb{N}, Bool, ... 1-truncated: universe of sets

Introduction: Truncation Levels and Truncations

Back to the topic of this talk

So, how to get a map $\|A\|_{n} \rightarrow B$ in general?
Or: When does $f: A \rightarrow B$ factor through $\|A\|_{n}$?

* always, if B is n-truncated
* this paper:

Theorem
If B is $(n+1)$-truncated:

$$
f: A \rightarrow B \text { factors through }\|A\|_{n}
$$

iff
f induces trivial maps on all $(n+1)$-st loop spaces.

Special cases of the result

Special case $n=-1$

If B is 0-truncated, i.e. has unique identity proofs:

$$
f: A \rightarrow B \text { factors through }\|A\|_{-1}
$$

f is weakly constant: $\Pi_{x, y: A} f(x)=f(y)$.

f must be weakly constant.

This was already known
[K-Escardó-Coquand-Altenkirch 2014].

Special cases of the result

$$
\begin{gathered}
\text { Special case } n=0 \\
\text { If } B \text { is 1-truncated: } \\
f: A \rightarrow B \text { factors through }\|A\|_{0} \\
\text { iff } \\
\mathrm{ap}_{f}:(x=y) \rightarrow(f(x)=f(y)) \text { is weakly constant. }
\end{gathered}
$$

ap_{f} must be weakly constant.

Known from the Rezk completion
[Ahrens-Kapulkin-Shulman 2014].

Special cases of the result

$$
\begin{gathered}
\text { Special case } n=1 \\
\text { If } B \text { is 2-truncated: } \\
f: A \rightarrow B \text { factors through }\|A\|_{1} \\
\text { iff } \\
f \text { introduces trivial maps on all second homotopy groups / } \\
\text { loop spaces: } \mathrm{ap}_{f}^{2}: \Omega^{2}(A, a) \rightarrow \Omega^{2}(B, f(a)) \text { weakly constant. }
\end{gathered}
$$

ap_{f}^{2} must be weakly constant.

This (and all other cases) are new.

Two proofs

Two proofs of our result:

* first proof:
- given $f^{\prime}:\|A\|_{n} \rightarrow B$, we do get $f: A \rightarrow B$ which is trivial on all $(n+1)$-st loop spaces
- if A is n-connected, this map is an equivalence
- piece together maps on the " n-connected components" of A
* second proof:
- construct a higher inductive type $H^{A, n}$
- show that $H^{A, n}$ has a suitable elimination principle
- show $H^{A, n} \simeq\|A\|_{n}$

Overview: Open and Solved Cases

	-1	0	1	2		3	4	...	∞
-1	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	...	\checkmark
0					unsolved cases				
1				\checkmark					
2				\checkmark					
3				\checkmark					
...									

Solved in: [K-Escardó-Coquand-Altenkirch 2014], [Ahrens-Kapulkin-Shulman 2014], [K 2015], [HERE]

