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Overview

This talk:
Introduction to Homotopy Type Theory

Generalizations of Hedberg’s Theorem, based on joint work
with T. Altenkirch, T. Coquand, M. Escardo
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Reminder: Type Theory

a formal system
...and a possible foundation of (constructive) mathematics
... for proof assistants and (dependently typed) programming
... as used for Coq and Agda

e.g.
M —Xa—>faa: (A-A—-B)—-A—-B
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Reminder: Equality

Decidable equality for typechecking & computation; e. g.
(Aa.b)x =g b[x/a]
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Reminder: Equality

Decidable equality for typechecking & computation; e. g.
(Aa.b)x =g b[x/a]

Equality needing a proof, i.e. a term of the identity type, e.g.
Vmn.(m+n)=(n+m)
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Propositional Equalit

Reminder: Identity Types

...Is just an inductive type I
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P:(ab:A) —a=b— Set
m:Ya.P(a, a, refl,)

Jabq) + P(a. b, q)
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Propositional Equalit

Reminder: Identity Types

...Is just an inductive type I

P:(ab:A) —a=b— Set
m:Ya.P(a, a, refl,)

Jabq) + P(a. b, q)

a: A

refl, - a= a
J(a,a,refla) =p Ma
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Uniqueness of Identity Proofs

Uniqueness of Identity Proofs (UIP)

Given a: Aand p: a= a, can we prove p = refl,?
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Given a: Aand p: a= a, can we prove p = refl,?

Simple,
Good computational
properties,
More powerful Pattern
Matching
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Uniqueness of Identity Proofs

Uniqueness of Identity Proofs (UIP)

Given a: Aand p: a= a, can we prove p = refl,?

: Intuitively wrong,
Simple, . .
. Impossible to express statements
Good computational .
. about equality,
properties, . .
isomorphic sets can not (really)
More powerful Pattern
. be treated as equal
Matching
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Homotopic Model

Homotopic Model - technical details

Voevodsky (and Awodey, independently, and others):

Without UIP: new model of Type Theory
(types as weak w-groupoids)
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Homotopic Model

Homotopic Model - technical details

Voevodsky (and Awodey, independently, and others):

Without UIP: new model of Type Theory
(types as weak w-groupoids)

best expressible in Simplicial Sets SSets (the topos Sets®™)
realization functor R : SSets — Top

R is a Quillen equivalence of model categories

= (more or less) a model that uses topological spaces as types
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Set with structure I
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Set with structure l

A 1 type
ab: A
p.g:.a=b
H:p=g
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Homotopic Model

UIP in the Homotopic Model

Example: want to prove

Vp.p = refl,
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Homotopic Model

UIP in the Homotopic Model

Okay, but what now?
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Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

(11/23) Birmingham - 16/11/12



Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




Homotopic Model

J in the Homotopic Model
Want: (a, a, p) = (a, a, refl,)

(before, it was: p = refl,)

= Use Jwith Pabp =
(a, b, p) = (a, a, refl,)

P:(ab:A —a=b— Set
m :Va.P(a,a,refl,)

Jabq) + P(a. b, q)

(11/23) Birmingham - 16/11/12




o Hedbergs Theorem
Hedberg's theorem
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o Hedbergs Theorem
Hedberg's theorem

DecidableEquality, == Yab. (a=b + —a=b)

DecidableEquality, — UIPx I
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Hedberg's theorem

const(f) := Vab.fa=fb I

g :Vab.a=b— a=b
path-const(g) := Vab. constg.p
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Hedberg's theorem

Lemma 1
DecidableEquality — >4V ab.constg,p

Proof.
@ Given dec: Vab.(a=b + —a=b).
@ Given a, b, we want: g,,: a=b — a=b.
@ If decab = inr , then nothing to do
o If decab=inlp, then g.,( ) = p ]
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Hedberg’s Theorem

Hedberg's theorem

Lemma 2
>g4Vab.constg,, — UIP
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Hedberg's theorem

Lemma 2
>g4Vab.constg,, — UIP

Proof.
@ Given g : Vab.a=b — a= b which is constant
@ Givenany a,b : Aand p,g: a=b.

@ Claim: p= (ga.refl,) o g.(p)
@ Proof with J: Just do it for (a, a, refl,). That’s true!

@ Same for q. But g,, and g, are constant. O]
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Corollary: The Circle type does not have
decidable equality

dec:(a,b: A) —
(a=b + —a=)Dh)
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Generalizations of Hedberg’s Theorem

Generalizations of Hedberg's theorem

We have seen
Lemma 1
DecidableEquality — >4V ab. const g,y

DecidableEquality is a very strong property. How about something
weaker?
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Generalizations of Hedberg's theorem

We have seen

DecidableEquality — >4V ab.const g,p

DecidableEquality is a very strong property. How about something
weaker? For example:

Vab.-—(a=b) - a=b
YV ab. [propositional evidence for a=b] — a=b
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Generalizations of Hedberg’s Theorem
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Generalizations of Hedberg’s Theorem

Propositions

So, what is “propositional evidence"?

propy = VYab.a=b I

“at most one inhabitant”

Write Prop for this “subset” of Type
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Generalizations of Hedberg’s Theorem

H-Propositional Reflection

A some type. We want to say that A is inhabited without giving
away a specific inhabitant. (Awodey/Bauer)
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Generalizations of Hedberg’s Theorem

H-Propositional Reflection

A some type. We want to say that A is inhabited without giving
away a specific inhabitant. (Awodey/Bauer)

* . Type — Prop
is defined to be the left adjoint of emb: Prop — Type

This means:

e A*is in Prop
on:A— A
e if P is a proposition and A — P, then A* — P
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Generalizations of Hedberg’s Theorem

Generalizations of Hedberg's Theorem

“Propositional evidence for a = b” is now just [an inhabitant of]
(a = b)*.

Vab.(a=b)* - a=b I
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Generalizations of Hedberg’s Theorem

Generalizations of Hedberg's Theorem

Theorem
h-separated, <— 24V ab.constg,, <— UIP,

Proof.

@ h-separated, — >4V ab.constg,p
nearly the same as Lemma 1 :
DecidableEquality — >4V ab.const g,

@ >, Vab.constgy, — UIPa
Lemma 2

e UIP, — h-separated,
a = b is automatically propositional,
= use universal property of *
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Generalizations of Hedberg’s Theorem

Generalizations of Hedberg's Theorem

Three properties above for any type X (not just a = b):

h-separated , becomes X = X
Y,Vab.constg.p becomes L g:x—xconst(g)
UlPa becomes “X is a proposition”

The third is not so interesting.

Theorem
The first and the second are equivalent, for any X.

(This is not trivial.)
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Further Questions

Many further questions. . .

One can ask:
@ What does a constant function X — Y give us?
@ What does this have to do with quotients?
@ What does V X . X* — X imply?
° ...

THANK YOU!
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