Homotopy Type Theory and Hedberg's Theorem

Nicolai Kraus

University of Nottingham, UK

16/11/12

Overview

Overview

This talk:

Introduction to Homotopy Type Theory

Generalizations of Hedberg's Theorem, based on joint work with T. Altenkirch, T. Coquand, M. Escardo

Intensional Type Theory

Intensional Type Theory

a formal system

Intensional Type Theory

a formal system ... and a possible foundation of (constructive) mathematics

Intensional Type Theory

a formal system ... and a possible foundation of (constructive) mathematics ... for proof assistants and (dependently typed) programming

Intensional Type Theory

a formal system ... and a possible foundation of (constructive) mathematics ... for proof assistants and (dependently typed) programming ... as used for Coq and Agda

Intensional Type Theory

a formal system ... and a possible foundation of (constructive) mathematics ... for proof assistants and (dependently typed) programming ... as used for Coq and Agda

e.g.
$$\lambda f \rightarrow \lambda a \rightarrow f a a : (A \rightarrow A \rightarrow B) \rightarrow A \rightarrow B$$

Equality

Reminder: Equality

Definitional Equality

Decidable equality for typechecking & computation; e.g. $(\lambda a.b) x =_\beta b[x/a]$

Equality

Reminder: Equality

Definitional Equality

Decidable equality for typechecking & computation; e.g. $(\lambda a.b) x =_\beta b[x/a]$

Propositional Equality

Equality needing a proof, i. e. a term of the identity type, e.g. $\forall m n . (m + n) \equiv (n + m)$ Propositional Equality

Reminder: Identity Types

Propositional equality

... is just an inductive type

Propositional equality

... is just an inductive type

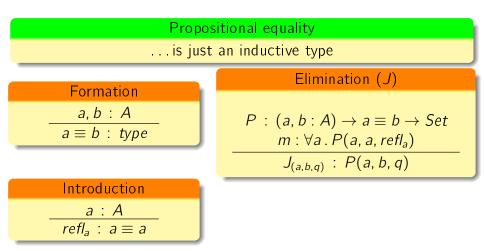
Formation	
a, b : A	
$a \equiv b$: type	

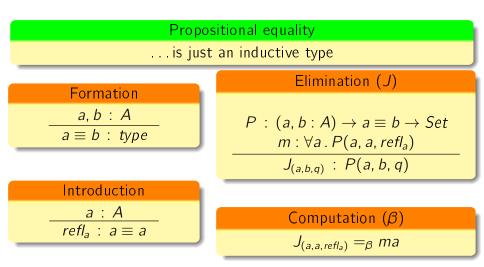
Propositional equality

... is just an inductive type

Formation	
a, b : A	
$a \equiv b$: type	

$$\frac{a:A}{refl_a:a\equiv a}$$





Uniqueness of Identity Proofs

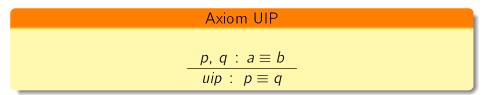
Uniqueness of Identity Proofs (UIP)

Given a : A and $p : a \equiv a$, can we prove $p \equiv refl_a$?

Uniqueness of Identity Proofs

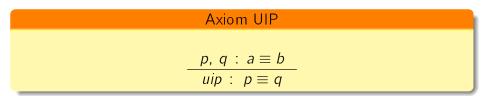
Uniqueness of Identity Proofs (UIP)

Given a : A and $p : a \equiv a$, can we prove $p \equiv refl_a$?



Uniqueness of Identity Proofs (UIP)

Given a : A and $p : a \equiv a$, can we prove $p \equiv refl_a$?

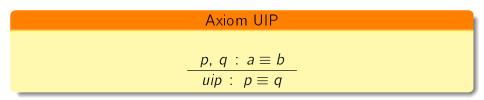


Advantages

Simple, Good computational properties, More powerful Pattern Matching

Uniqueness of Identity Proofs (UIP)

Given a : A and $p : a \equiv a$, can we prove $p \equiv refl_a$?



Advantages

Simple, Good computational properties, More powerful Pattern Matching

Disadvantages

Intuitively wrong, impossible to express statements about equality, isomorphic sets can not (really) be treated as equal

Voevodsky (and Awodey, independently, and others):

Voevodsky (and Awodey, independently, and others):

Without UIP: new model of Type Theory (types as weak ω -groupoids)

• best expressible in Simplicial Sets *SSets* (the topos $Sets^{\Delta^{op}}$)

Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets *SSets* (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$

Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets *SSets* (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$
- *R* is a *Quillen equivalence* of model categories

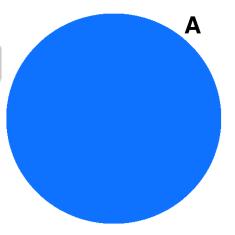
Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets *SSets* (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$
- *R* is a *Quillen equivalence* of model categories
- ullet \Rightarrow (more or less) a model that uses topological spaces as types

Homotopic Model

Topological Space

Set with structure

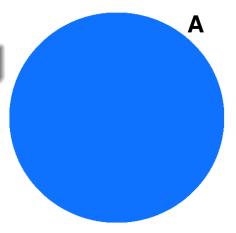


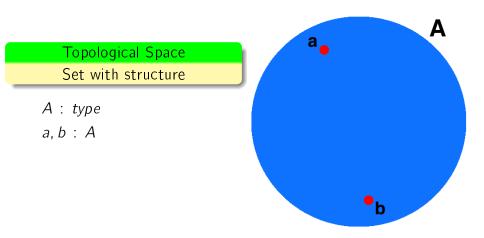
Homotopic Model

Topological Space

Set with structure

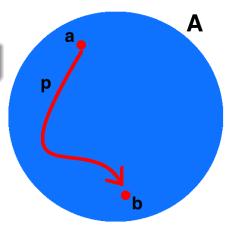
A : type





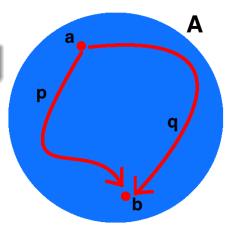
Topological Space Set with structure

- A : type a, b : A
- p : $a \equiv b$



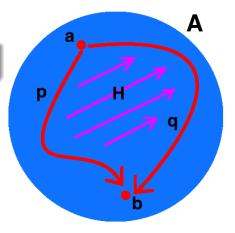
Topological Space Set with structure

A : typea, b : A p, q : a \equiv b

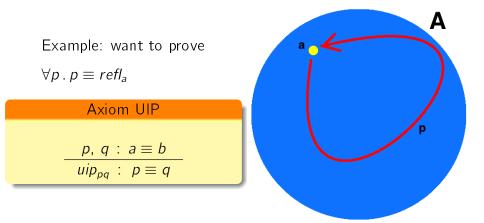


Topological Space Set with structure

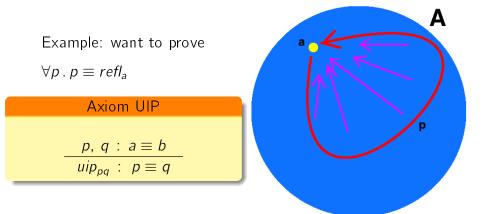
A : type a, b : A $p, q : a \equiv b$ $H : p \equiv q$



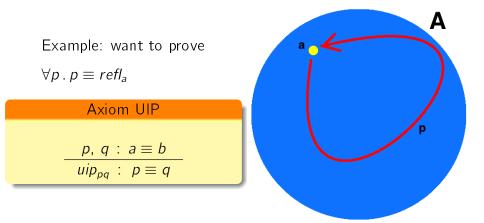
UIP in the Homotopic Model



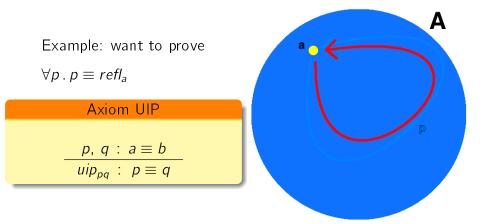
UIP in the Homotopic Model



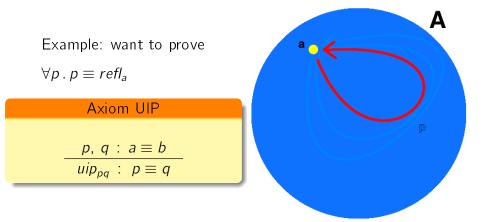
UIP in the Homotopic Model



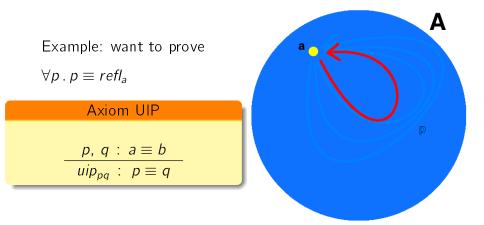
UIP in the Homotopic Model



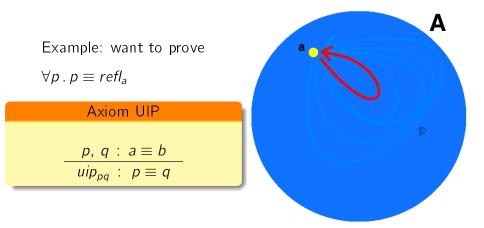
UIP in the Homotopic Model



UIP in the Homotopic Model

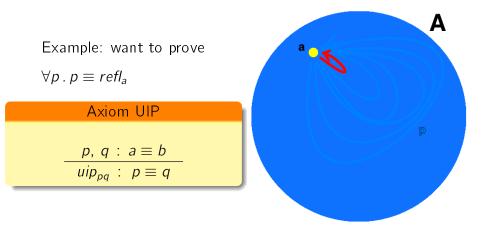


UIP in the Homotopic Model



(9/23) Birmingham - 16/11/12

UIP in the Homotopic Model



(9/23) Birmingham - 16/11/12

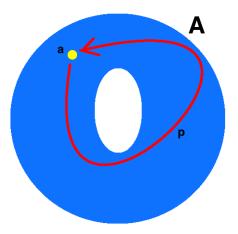
UIP in the Homotopic Model



(9/23) Birmingham - 16/11/12

UIP in the Homotopic Model

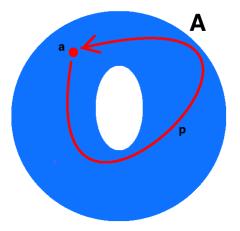
Okay, but what now?



(10/23) Birmingham - 16/11/12

Want: $(a, a, p) \equiv (a, a, refl_a)$

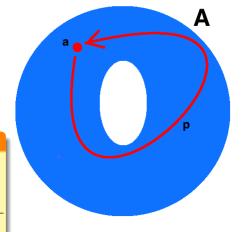
(before, it was: $p \equiv refl_a$)



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

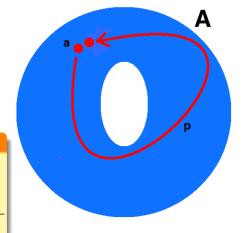
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
(a, b, p) \equiv (a, a, refl_a)

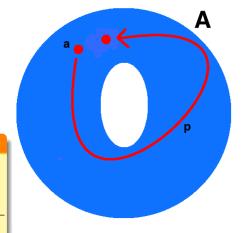
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
(a, b, p) \equiv (a, a, refl_a)

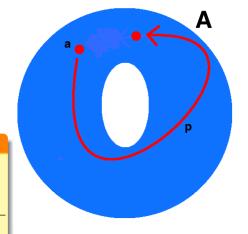
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$

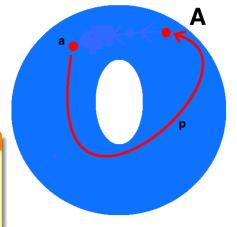


Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was: $p \equiv refl_a$)

$$\Rightarrow Use J with P a b p = (a, b, p) \equiv (a, a, refl_a)$$

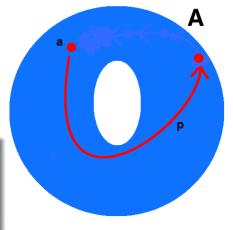
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was: $p \equiv refl_a$)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

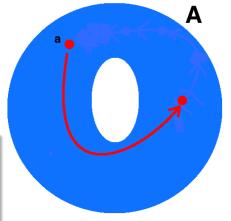
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was: $p \equiv refl_a$)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

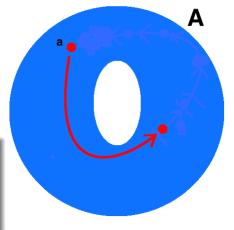
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was: $p \equiv refl_a$)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

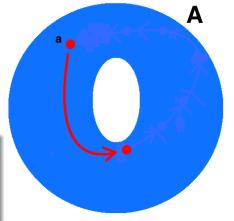
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was: $p \equiv refl_a$)
 \Rightarrow Use J with P a b p =
 $(a, b, p) \equiv (a, a, refl_a)$

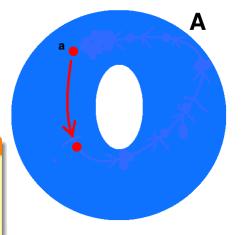
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
(a, b, p) \equiv (a, a, refl_a)

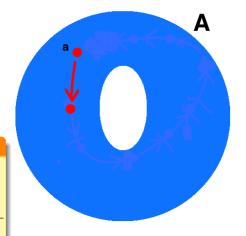
$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =
(a, b, p) \equiv (a, a, refl_a)

$$P : (a, b : A) \to a \equiv b \to Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$

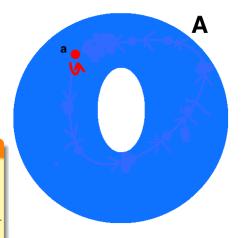


Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

(before, it was:
$$p \equiv refl_a$$
)
 \Rightarrow Use J with P a b p =

 $(a, b, p) \equiv (a, a, refl_a)$

$$P : (a, b : A) \rightarrow a \equiv b \rightarrow Set$$
$$m : \forall a . P(a, a, refl_a)$$
$$J_{(a,b,q)} : P(a, b, q)$$



Hedberg's theorem

Decidable Equality

$DecidableEquality_A := \forall a b . (a \equiv b + \neg a \equiv b)$

(12/23) Birmingham - 16/11/12

Hedberg's theorem

Decidable Equality

 $DecidableEquality_A := \forall a b . (a \equiv b + \neg a \equiv b)$

Hedberg's theorem

 $DecidableEquality_A \longrightarrow UIP_A$

(12/23) Birmingham - 16/11/12

Hedberg's theorem

Constant Function

$$const(f) := \forall a b . f a \equiv f b$$

Constant Endofunction on Path Spaces

 $g : \forall a b . a \equiv b \rightarrow a \equiv b$ $path-const(g) := \forall a b . const g_{ab}$

(13/23) Birmingham - 16/11/12

Hedberg's theorem

Lemma 1 DecidableEquality $\longrightarrow \Sigma_q \forall a b . const g_{ab}$

(14/23) Birmingham - 16/11/12

Lemma 1 DecidableEquality $\longrightarrow \Sigma_q \forall a b . const g_{ab}$

• Given dec:
$$\forall a b$$
. $(a \equiv b + \neg a \equiv b)$.

Lemma 1 DecidableEquality $\longrightarrow \Sigma_q \forall a b . const g_{ab}$

Proof.

• Given dec:
$$\forall a b$$
. $(a \equiv b + \neg a \equiv b)$.

• Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.

Lemma 1 DecidableEquality $\longrightarrow \Sigma_q \forall a b . const g_{ab}$

Proof.

• Given
$$dec$$
: $\forall a b$. $(a \equiv b + \neg a \equiv b)$.

• Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.

• If dec a b = inr, then nothing to do

Lemma 1 DecidableEquality $\longrightarrow \Sigma_q \forall a b . const g_{ab}$

• Given dec:
$$\forall a b$$
. $(a \equiv b + \neg a \equiv b)$.

- Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.
- If dec a b = inr, then nothing to do
- If dec a b = inl p, then $g_{ab}(_) = p$

Hedberg's theorem

Lemma 2

$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP$

(15/23) Birmingham - 16/11/12

Lemma 2 $\Sigma_q \forall a b. const g_{ab} \longrightarrow UIP$

Proof.

• Given g : $\forall a b . a \equiv b \rightarrow a \equiv b$ which is constant

Lemma 2

$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP$$

- Given g : $\forall a b . a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.

Lemma 2

$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP$$

- Given g : $\forall a b . a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$

Lemma 2

$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP$$

- Given g : $\forall a b . a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$
- Proof with J: Just do it for (a, a, refl_a). That's true!

Lemma 2

$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP$$

- Given g : $\forall a b . a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$
- Proof with J: Just do it for (a, a, refl_a). That's true!
- Same for *q*. But *g_{aa}* and *g_{ab}* are constant.

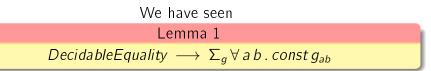
Corollary

Corollary: The Circle type does not have decidable equality

$$dec: (a, b: A) \rightarrow (a \equiv b + \neg a \equiv b)$$

(16/23) Birmingham - 16/11/12

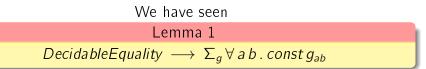
Generalizations of Hedberg's theorem



DecidableEquality is a very strong property. How about something weaker?

(17/23) Birmingham - 16/11/12

Generalizations of Hedberg's theorem



DecidableEquality is a very strong property. How about something weaker? For example:

Separated
$\forall a b . \neg \neg (a \equiv b) \rightarrow a \equiv b$
"general"
$orall$ a b . [propositional evidence for $a\equiv b]$ $ o$ $a\equiv b$

Propositions

So, what is "propositional evidence"?

(18/23) Birmingham - 16/11/12

Propositions

So, what is "propositional evidence"?

Type A is a Proposition if

$$prop_A = \forall a b . a \equiv b$$

"at most one inhabitant"

(18/23) Birmingham - 16/11/12

Propositions

So, what is "propositional evidence"?

Type A is a Proposition if

$$prop_A = \forall a b . a \equiv b$$

"at most one inhabitant" Write **Prop** for this "subset" of **Type**

H-Propositional Reflection

A some type. We want to say that A is inhabited without giving away a specific inhabitant. (Awodey/Bauer)

H-Propositional Reflection

A some type. We want to say that A is inhabited without giving away a specific inhabitant. (Awodey/Bauer)

H-propositional reflection

* : Type \rightarrow Prop

is defined to be the left adjoint of emb: $\mathsf{Prop} \, \hookrightarrow \, \mathsf{Type}$

H-Propositional Reflection

A some type. We want to say that A is inhabited without giving away a specific inhabitant. (Awodey/Bauer)

H-propositional reflection

* : Type \rightarrow Prop

is defined to be the left adjoint of emb: $Prop \hookrightarrow Type$

This means:

- A* is in **Prop**
- η : $A \rightarrow A^*$
- if P is a proposition and $A \rightarrow P$, then $A^* \rightarrow P$

(19/23) Birmingham - 16/11/12

"Propositional evidence for $a \equiv b$ " is now just [an inhabitant of] $(a \equiv b)^*$.

H-Separated
$orall a b . (a \equiv b)^* ightarrow a \equiv b$

"Propositional evidence for $a \equiv b$ " is now just [an inhabitant of] $(a \equiv b)^*$.

H-Separated	
$\forall a b . (a \equiv b)^* \rightarrow a \equiv b$	

Theorem

$$h$$
-separated_A $\longleftrightarrow \Sigma_g \forall a b . const g_{ab} \longleftrightarrow UIP_A$

Theorem

h-separated_A $\longleftrightarrow \Sigma_g \forall a b . const g_{ab} \longleftrightarrow UIP_A$

Theorem

$$h$$
-separated_A $\longleftrightarrow \Sigma_g \forall a b . const g_{ab} \longleftrightarrow UIP_A$

Proof.

• h-separated_A $\longrightarrow \Sigma_g \forall a b . const g_{ab}$ nearly the same as Lemma 1 : $DecidableEquality \longrightarrow \Sigma_g \forall a b . const g_{ab}$

Theorem

$$h$$
-separated_A $\longleftrightarrow \Sigma_g \forall a b . const g_{ab} \longleftrightarrow UIP_A$

Proof.

• h-separated_A $\longrightarrow \Sigma_g \forall a b . const g_{ab}$ nearly the same as Lemma 1 : $DecidableEquality \longrightarrow \Sigma_g \forall a b . const g_{ab}$

•
$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP_A$$

Lemma 2

Theorem

$$h$$
-separated_A $\longleftrightarrow \Sigma_g \forall a b . const g_{ab} \longleftrightarrow UIP_A$

Proof.

• h-separated_A $\longrightarrow \Sigma_g \forall a b . const g_{ab}$ nearly the same as Lemma 1 : $DecidableEquality \longrightarrow \Sigma_g \forall a b . const g_{ab}$

•
$$\Sigma_g \forall a b . const g_{ab} \longrightarrow UIP_A$$

Lemma 2

- $UIP_A \longrightarrow h$ -separated_A $a \equiv b$ is automatically propositional,
 - \Rightarrow use universal property of *

(21/23) Birmingham - 16/11/12

Three properties above for any type X (not just $a \equiv b$):

Three properties above for any type X (not just $a \equiv b$):

h-separated_A becomes $X^* \to X$

Three properties above for any type X (not just $a \equiv b$):

h-separated _A	becomes	$X^* o X$
Σ_g \forall a b . const g_{ab}	becomes	$\Sigma_{g:X \to X} const(g)$

Three properties above for any type X (not just $a \equiv b$):

h-separated _A	becomes	$X^* o X$
Σ_g \forall a b . const g_{ab}	becomes	$\Sigma_{g:X \to X} const(g)$
UIP _A	becomes	"X is a proposition"

Three properties above for any type X (not just $a \equiv b$):

h-separated _A	becomes	$X^* \to X$
Σ_g \forall a b . const g_{ab}	becomes	$\Sigma_{g:X \to X} const(g)$
UIP _A	becomes	"X is a proposition"

The third is not so interesting.

Three properties above for any type X (not just $a \equiv b$):

h-separated _A	becomes	$X^* \to X$
Σ_g \forall a b . const g_{ab}	becomes	$\Sigma_{g:X \to X} const(g)$
UIP _A	becomes	"X is a proposition"

The third is not so interesting.

Theorem

The first and the second are equivalent, for any X.

(This is not trivial.)

(22/23) Birmingham - 16/11/12

Many further questions...

One can ask:

- What does a constant function $X \rightarrow Y$ give us?
- What does this have to do with quotients?
- What does $\forall X . X^* \rightarrow X$ imply?

THANK YOU!

o . . .