Generalizations of Hedberg's Theorem

Nicolai Kraus*
joint work with

Martín Escardó
Thierry Coquand
Thorsten Altenkirch*
*Functional Programming Lab, University of Nottingham
28/06/13

Views on Martin-Löf Type Theory

MLTT is a formal system (with dependent types, Σ, Π, inductive types, ...)
can be used for...

Programming

- type system can provide a precise specification
- e.g. Agda code can be compiled to a Haskell program

Mathematics

- foundation of mathematics
- proof assistants (e.g. Coq):
- help finding proofs
- allow formalizing (and thereby verifying) results
- e.g. a lot of axiomatic homotopy theory has been formalized in Homotopy Type Theory

Equality in MLTT

Definitional Equality

Decidable equality for typechecking \& computation; e. g.

$$
(\lambda x \cdot t) a \equiv t[a / x]
$$

Propositional Equality

Equality needing a proof, e. g.

$$
\forall m n .(m+n)=(n+m)
$$

Equality in MLTT

Propositional equality

... is "just" an inductive type

Formation

$$
\frac{a, b: A}{a==_{A} b: \mathcal{U}}
$$

Introduction

$$
\frac{a: A}{r e f l_{a}: a=A a}
$$

Elimination (J - Paulin-Mohring) for any a: A

$$
\begin{gathered}
P:(b: A) \rightarrow a=_{A} b \rightarrow \mathcal{U} \\
m: P \text { arefla } \\
J_{P} m: \forall(b, q) . P(b, q)
\end{gathered}
$$

Computation (β)
 J_{P} marefl $_{a} \equiv_{\beta} m$

Uniqueness of Identity Proofs (UIP)

Given a: A.

- Can we show

$$
(b, c: A) \rightarrow(p: a=b) \rightarrow(q: a=c) \rightarrow(b, p)=(c, q) \quad ?
$$

Induction / J/"pattern matching" on (b, p)

$$
\Rightarrow \quad(c: A) \rightarrow(q: a=c) \rightarrow\left(a, r e f f_{a}\right)=(c, q)
$$

Induction on $(c, q) \quad \Rightarrow \quad\left(a, r e f f_{a}\right)=\left(a, r e f l_{a}\right)$.

- Can we show $(b: A) \rightarrow(p, q: a=b) \rightarrow p=q \quad$?

Induction on (b, p)

$$
\Rightarrow \quad(q: a=a) \rightarrow\left(r e f f_{a}=q\right)
$$

Uniqueness of Identity Proofs (UIP)

[potential] Axiom UIP, aka K

$$
\begin{aligned}
& p, q: a=b \\
& \hline \text { UIP }: p=q
\end{aligned}
$$

Disadvantages

Advantages

- simple
- more
powerful pattern matching
- if $A \simeq B$, we want to treat A and B as equal \Rightarrow the isomorphism matters
(UIP incompatible with univalence)
- nontrivial equality structure can be useful (Homotopy Type Theory uses it to formalize axiomatic homotopy theory)

Hedberg's Theorem

Which types satisfy UIP naturally?

> DecidableEquality $_{A}$, i. e.
> $\forall a b .(a=b+\neg a=b)$
$\Downarrow \quad \forall x y \cdot f(x)=f(y)$
there is a family $g_{a b}: a=b \rightarrow a=b$ of constant endofunctions

$$
\begin{gathered}
\mathbb{\mathbb { 1 }} \\
\forall(p, q: a=b) \cdot p=q
\end{gathered}
$$

Strengthening Hedberg's Theorem

DecidableEquality is a very strong property. How about something weaker? For example:

Separated ($\neg\urcorner$-stable equality)

$$
\forall a b . \neg \neg(a=b) \rightarrow a=b
$$

With function extensionality, separated $_{A} \rightarrow$ UIP $_{A}$

Truncation

$\neg \neg A$ can be seen as "anonymous existence".
A better way to say that A is "anonymously" inhabited is truncation $\|A\|$, aka squash types or bracket types (Awodey / Bauer).

Properties:

- In $\|A\|$, we cannot distinguish the different inhabitants, i. e.
$\|A\|$ is a proposition
- $A \rightarrow\|A\|$
- If $A \rightarrow P$ and P is a proposition, then $\|A\| \rightarrow P$

Generalizations

h-separated $_{A}$, i. e.

$$
\|a=b\| \rightarrow a=b
$$

§
there is a family
$g_{a b}: a=b \rightarrow a=b$ of
constant endofunctions
I

$$
\begin{gathered}
\mathrm{UIP}_{A}, \text { i. e. } \\
(p, q: a=b) \rightarrow p=q
\end{gathered}
$$

h-stablex, i. e. $\|X\| \rightarrow X$
\Downarrow (easy) $\quad \Uparrow$ (hard)
there is a constant $g: X \rightarrow X$

介
X is a proposition, i.e.
$(p, q: X) \rightarrow p=q$

Applications I

Define $\langle\langle X\rangle\rangle$ as
"every constant endofunction on X has a fixed point".
$\langle\langle X\rangle\rangle$ is a new notion of anonymous existence, similar to $\|X\|$, but definable in basic MLTT.

$$
X \Rightarrow\|X\| \Rightarrow\langle\langle X\rangle\rangle \Rightarrow \neg \neg X
$$

and all implications are strict

Applications II

Assume

 every type has a constant endofunction.What is this statement's status?

- It follows from "excluded middle", $\forall A . A+\neg A$
- (We think) it does not imply $\forall A$. $A+\neg A$
- consequence: UIP
- stronger consequence: all equalities are decidable

Surprise?

We know:
there is constant function

$$
X \rightarrow X
$$

\Uparrow

$$
\|X\| \rightarrow x
$$

How about:
there is constant function

$$
X \rightarrow Y
$$

\Uparrow (trivial)
*

$$
\|X\| \rightarrow Y
$$

\Downarrow seems to fail due to a homotopical problem. Apparently, we need an infinite tower of coherence conditions (c.f. defining semi-simplicial types, open problem of the Princeton special year program on UF/HoTT).

Questions?

Thank you!

