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When exploring the possibilities of Homotopy Type Theory (HoTT), one quickly realises that
many constructions come with coherence problems. This is already apparent when we try
to define the concept of monoid in full generality: we begin with a type A of elements and
a composition function ◦. Then we add the requirement that ◦ is associative, which can be
expressed using the identity type. However, in many situations, associativity might not be
enough: we need a form of coherence for the equalities produced by it (the “pentagon”). But
these coherence proofs may be required to satisfy their own coherence condition, and this process
continues indefinitely, leading to a tower of “coherence properties” which we currently cannot
capture with a single definition within type theory. A possible solution is to restrict ourselves
to types of some given (small) truncation level, and in the described example, it is justifiable
that A should be a set (in the sense of HoTT). However, there are a number of interesting cases
where either this is not possible or makes no sense. We can think of the following:

1. Defining semi-simplicial types (see e.g. [2]). More generally, representing Reedy fibrant
diagrams [7] internally.

2. Given a powerful enough mutual induction principle for higher inductive types, it is possible
to define the syntax of HoTT in itself. However, any attempts to define an interpretation
function that maps syntactic types to outer types is stymied by the appearance of coherence
problems, when mapping definitional equalities of syntactical elements to propositional
equalities. A discussion can be found in [6].

3. The current formulation of category theory in HoTT assumes 0-truncated hom-sets [1].
This has the problem of excluding the “category” of types and functions, and many other
interesting categorical structures, for which we would need to internalise a notion of
(∞, 1)-category.

4. If we want to construct functions ‖A‖ → B, previous work [4] shows that we have
(depending on the truncation level of B) to provide a tower of coherence conditions. In the
current theory, we can only express finite parts, and we would like to be able to internalise
and formalise the complete result.

All these questions are related and we expect that none of them is solvable in the theory that is
considered in the standard reference [8]. Let us elaborate on the first, which we can express as
follows: given a type expression E, is it possible to define a family of types M : N→ Type such
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that E can be given the type (n : N)→Mn → Type and M satisfies1

M0
∼= 1

M1
∼= E0 × E0

M2
∼= (x0, x1, x2 : E0)× E1(x0, x1)× E1(x0, x2)× E1(x1, x2)

M3
∼= (x0, x1, x2, x3 : E0)× (x01 : E1(x0, x1))× (x02 : E1(x0, x2))× (x03 : E1(x0, x3))

× (x12 : E1(x1, x2))× (x13 : E1(x1, x3))× (x23 : E1(x2, x3))

× E2(x0, x1, x2, x01, x02, x12)× E2(x0, x1, x3, x01, x03, x13)

× E2(x0, x2, x3, x02, x03, x23)× E2(x1, x2, x3, x12, x13, x23)

(1)

and so on? At first sight, it looks as if M should be relatively straightforward to define by
induction on its index. However, a lot of time and effort has already been spent on this (see, for
example, Herbelin’s exposition [2] and Shulman’s discussion [6]), and it seems that none of the
proposed constructions work. It is not easy to pinpoint what goes wrong.

We could try the following: first, we define the category ∆+ in type theory. It has nonempty
finite sets as objects and strictly increasing functions as morphisms.Then, we can attempt to

define a double-indexed family M
(k)
n by induction on k, such that the sequence M

(k)
n stabilises

for k ≥ n, and such that M
(k)
n is a ∆+-functor in n. Our intention is then to take Mn :≡M (n)

n .

We set M
(0)
n :≡ 1. Then, inductively, we define

M (k+1)
n :≡ (x : M (k)

n )× ((σ : ∆+(k, n))→ Ek(σ?x)), (2)

where σ? is the functorial action of M (k) (defined at the same time as M
(k)
n ). Unfortunately,

this does not type-check. If we (manually or by a script) start to write down the sequence
M0,M1,M2, . . ., together with appropriate Ei, following the formula (2), then this does type-
check.2 However, as soon as the indices are variables of type N (instead of fixed numerals),
the construction does not type-check because the functorial action of M (k) is not strict. This
suggests that a judgmental η-law for natural numbers, or some form of equality reflection,
would provide a solution. A similar observation, we believe, motivated Voevodsky to start the
development of HTS.

The problem of constructing “Reedy-fibrant diagrams”, or “infinite Σ-types”, has been
discussed in the community quite frequently (see, for example, Shulman’s blog post and its
discussion [6]), and several people have argued that it would be desirable to formulate a version
of the HoTT theory in which this is possible. Motivations that are similar to ours have led to
the development of Voevodsky’s HTS [9], a 2-level system, and also to Hickey’s very dependent
types [3] that have been suggested in the context of NuPRL (and for which it is unclear whether
they can be made sense of in HoTT).

Attempting to provide an extension of the “standard theory” to perform such constructions,
we suggest a system with two different equalities. This is the same approach that is taken in
the development of HTS. However, we hope to be able to avoid resorting to the reflection rule
for strict equality, which makes typechecking undecidable. Currently, we believe that this is
possible in such a way that we can use Agda to provide a nice implementation of our system.

1We write (a : A)×B(a) for Σ(a : A).B(a) and (later) (a : A)→ B(a) for Π(a : A).B(a).
2An interesting observation is that, if the type theory has η for both Π- and Σ-types (as in Agda, but not in

Coq), ∆+ can be implemented in such a way that all categorical laws hold strictly [5]. This is a requirement for
the claim that M1,M2, . . . type-check. It looks as if this strictness could be useful for the construction in general,
but so far, we are not sure whether it is indeed relevant.
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