{-# OPTIONS --without-K #-}

open import lib.Base
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.Equivalences

{- Structural lemmas about paths over paths

The lemmas here have the form
[↓-something-in]  : introduction rule for the something
[↓-something-out] : elimination  rule for the something
[↓-something-β]   : β-reduction  rule for the something
[↓-something-η]   : η-reduction  rule for the something

The possible somethings are:
[cst] : constant fibration
[cst2] : fibration constant in the second argument
[cst2×] : fibration constant and nondependent in the second argument
[ap] : the path below is of the form [ap f p]
[fst×] : the fibration is [fst] (nondependent product)
[snd×] : the fibration is [snd] (nondependent product)

You can also go back and forth between dependent paths and homogeneous paths
with a transport on one side with the functions
[to-transp],  [from-transp],  [to-transp-β]
[to-transp!], [from-transp!], [to-transp!-β]

More lemmas about paths over paths are present in the lib.types.* modules
(depending on the type constructor of the fibration)
-}

module lib.PathOver where

{- Dependent paths in a constant fibration -}
module _ {i j} {A : Type i} {B : Type j} where

  ↓-cst-in : {x y : A} {p : x == y} {u v : B}
     u == v
     u == v [  _  B)  p ]
  ↓-cst-in {p = idp} q = q

  ↓-cst-out : {x y : A} {p : x == y} {u v : B}
     u == v [  _  B)  p ]
     u == v
  ↓-cst-out {p = idp} q = q

  ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v)
     (↓-cst-out (↓-cst-in {p = p} q) == q)
  ↓-cst-β idp q = idp

  {- Interaction of [↓-cst-in] with [_∙_] -}
  ↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
    (p' : u == v) (q' : v == w)
     ↓-cst-in {p = p  q} (p'  q')
      == ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q'
  ↓-cst-in-∙ idp idp idp idp = idp

  {- Interaction of [↓-cst-in] with [_∙'_] -}
  ↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
    (p' : u == v) (q' : v == w)
     ↓-cst-in {p = p ∙' q} (p' ∙' q')
      == ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q'
  ↓-cst-in-∙' idp idp idp idp = idp

  {- Introduction of an equality between [↓-cst-in]s (used to deduce the
     recursor from the eliminator in HIT with 2-paths) -}
  ↓-cst-in2 : {a a' : A} {u v : B}
    {p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁}
     q₀ == q₁
     (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [  p  u == v [  _  B)  p ])  q ])
  ↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k

-- Dependent paths in a fibration constant in the second argument
module _ {i j k} {A : Type i} {B : A  Type j} {C : A  Type k} where

  ↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y}
    (q : b == c [ C  p ]) {u : B x} {v : B y}
     u == v [ B  p ]
     u == v [  xy  B (fst xy))  (pair= p q) ]
  ↓-cst2-in idp idp r = r

  ↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y}
    (q : b == c [ C  p ]) {u : B x} {v : B y}
     u == v [  xy  B (fst xy))  (pair= p q) ]
     u == v [ B  p ]
  ↓-cst2-out idp idp r = r

-- Dependent paths in a fibration constant and non dependent in the
-- second argument
module _ {i j k} {A : Type i} {B : A  Type j} {C : Type k} where

  ↓-cst2×-in : {x y : A} (p : x == y) {b c : C}
    (q : b == c) {u : B x} {v : B y}
     u == v [ B  p ]
     u == v [  xy  B (fst xy))  (pair×= p q) ]
  ↓-cst2×-in idp idp r = r

  ↓-cst2×-out : {x y : A} (p : x == y) {b c : C}
    (q : b == c) {u : B x} {v : B y}
     u == v [  xy  B (fst xy))  (pair×= p q) ]
     u == v [ B  p ]
  ↓-cst2×-out idp idp r = r

-- Dependent paths in the universal fibration over the universe
↓-idf-out :  {i} {A B : Type i} (p : A == B) {u : A} {v : B}
   u == v [  x  x)  p ]
   coe p u == v
↓-idf-out idp = idf _

↓-idf-in :  {i} {A B : Type i} (p : A == B) {u : A} {v : B}
   coe p u == v
   u == v [  x  x)  p ]
↓-idf-in idp = idf _

-- Dependent paths over [ap f p]
module _ {i j k} {A : Type i} {B : Type j} (C : B  Type k) (f : A  B) where

  ↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
     u == v [ C  f  p ]
     u == v [ C  ap f p ]
  ↓-ap-in {p = idp} idp = idp

  ↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)}
     u == v [ C  ap f p ]
     u == v [ C  f  p ]
  ↓-ap-out idp idp = idp

-- Dependent paths over [ap2 f p q]
module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C  Type l)
  (f : A  B  C) where

  ↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z}
    {u : D (f x w)} {v : D (f y z)}
     u == v [ D  uncurry f  pair×= p q ]
     u == v [ D  ap2 f p q ]
  ↓-ap2-in {p = idp} {q = idp} α = α

  ↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z}
    {u : D (f x w)} {v : D (f y z)}
     u == v [ D  ap2 f p q ]
     u == v [ D  uncurry f  pair×= p q ]
  ↓-ap2-out {p = idp} {q = idp} α = α

apd↓ :  {i j k} {A : Type i} {B : A  Type j} {C : (a : A)  B a  Type k}
  (f : {a : A} (b : B a)  C a b) {x y : A} {p : x == y}
  {u : B x} {v : B y} (q : u == v [ B  p ])
   f u == f v [  xy  C (fst xy) (snd xy))  pair= p q ]
apd↓ f {p = idp} idp = idp

apd↓=apd :   {i j} {A : Type i} {B : A  Type j} (f : (a : A)  B a) {x y : A}
  (p : x == y)  (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p))
apd↓=apd f idp = idp

-- Paths in the fibrations [fst] and [snd]
module _ {i j} where

  ↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
    {u : A} {v : A'}
     u == v [ fst  pair×= p q ]
     u == v [  X  X)  p ]
  ↓-fst×-out idp idp h = h

  ↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
    {u : B} {v : B'}
     u == v [  X  X)  q ]
     u == v [ snd  pair×= p q ]
  ↓-snd×-in idp idp h = h

-- Mediating dependent paths with the transport version

module _ {i j} {A : Type i} where

  from-transp : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
     (transport B p u == v)
     (u == v [ B  p ])
  from-transp B idp idp = idp

  to-transp : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
     (u == v [ B  p ])
     (transport B p u == v)
  to-transp {p = idp} idp = idp

  to-transp-β : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
    (q : transport B p u == v)
     to-transp (from-transp B p q) == q
  to-transp-β B idp idp = idp

  to-transp-η : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
    (q : u == v [ B  p ])
     from-transp B p (to-transp q) == q
  to-transp-η {p = idp} idp = idp

  to-transp-equiv : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}  (u == v [ B  p ])  (transport B p u == v)
  to-transp-equiv B p =
    equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η)


  from-transp! : (B : A  Type j)
    {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
     (u == transport! B p v)
     (u == v [ B  p ])
  from-transp! B idp idp = idp

  to-transp! : {B : A  Type j}
    {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
     (u == v [ B  p ])
     (u == transport! B p v)
  to-transp! {p = idp} idp = idp

  to-transp!-β : (B : A  Type j)
    {a a' : A} (p : a == a')
    {u : B a} {v : B a'}
    (q : u == transport! B p v)
     to-transp! (from-transp! B p q) == q
  to-transp!-β B idp idp = idp

  to-transp!-η : {B : A  Type j} {a a' : A} {p : a == a'}
    {u : B a} {v : B a'}
    (q : u == v [ B  p ])
     from-transp! B p (to-transp! q) == q
  to-transp!-η {p = idp} idp = idp

  to-transp!-equiv : (B : A  Type j) {a a' : A} (p : a == a')
    {u : B a} {v : B a'}  (u == v [ B  p ])  (u == transport! B p v)
  to-transp!-equiv B p =
    equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η)

{- Various other lemmas -}

{- Used for defining the recursor from the eliminator for 1-HIT -}
apd=cst-in :  {i j} {A : Type i} {B : Type j} {f : A  B}
  {a a' : A} {p : a == a'} {q : f a == f a'}
   apd f p == ↓-cst-in q  ap f p == q
apd=cst-in {p = idp} x = x

↓-apd-out :  {i j k} {A : Type i} {B : A  Type j} (C : (a : A)  B a  Type k)
  {f : Π A B} {x y : A} {p : x == y}
  {q : f x == f y [ B  p ]} (r : apd f p == q)
  {u : C x (f x)} {v : C y (f y)}
   u == v [ uncurry C  pair= p q ]
   u == v [  z  C z (f z))  p ]
↓-apd-out C {p = idp} idp idp = idp

↓-ap-out= :  {i j k} {A : Type i} {B : Type j} (C : (b : B)  Type k)
  (f : A  B) {x y : A} (p : x == y)
  {q : f x == f y} (r : ap f p == q)
  {u : C (f x)} {v : C (f y)}
   u == v [ C  q ]
   u == v [  z  C (f z))  p ]
↓-ap-out= C f idp idp idp = idp

-- No idea what that is
to-transp-weird :  {i j} {A : Type i} {B : A  Type j}
  {u v : A} {d : B u} {d' d'' : B v} {p : u == v}
  (q : d == d' [ B  p ]) (r : transport B p d == d'')
   (from-transp B p r ∙'ᵈ (! r  to-transp q)) == q
to-transp-weird {p = idp} idp idp = idp

-- Something not really clear yet
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A  C) (g : B  C)
  where

  ↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
     (ap f p ∙' s == r [  x  f a == g x)   q ])
     (r == s  ap g q  [  x  f x == g b')  p ])
  ↓-swap {p = idp} {q = idp} r s t = (! t)  ∙'-unit-l s  ! (∙-unit-r s)

  ↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
     (r == s  ap g q  [  x  f x == g b')  p ])
     (ap f p ∙' s == r [  x  f a == g x)   q ])
  ↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s  ! (∙-unit-r s)  (! t)

  ↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
    (r : f a == g b') (s : f a' == g b)
    (t : ap f p ∙' s == r [  x  f a == g x)  q ])
     ↓-swap! r s (↓-swap r s t) == t
  ↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t  where
  
    coh :  {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t)
       p  ! q  ! (! r  p  ! q) == r
    coh idp idp idp = idp


trans-↓ :  {i j} {A : Type i} (P : A  Type j) {a₁ a₂ : A}
  (p : a₁ == a₂) (y : P a₂)  transport P (! p) y == y [ P  p ]
trans-↓ _ idp _ = idp

trans-ap-↓ :  {i j k} {A : Type i} {B : Type j} (P : B  Type k) (h : A  B)
  {a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂)) 
   transport P (! (ap h p)) y == y [ P  h  p ]
trans-ap-↓ _ _ idp _ = idp