
Isomorphism of Finitary Inductive Types

Nicolai Kraus and Christian Sattler

University of Nottingham

Abstract

We present an algorithm for deciding isomorphism of finitary mutually inductive
types.

We consider the simply typed lambda calculus with finite products and coproducts, type
variables X, Y , Z, . . . , and mutually inductive types, for example defined by

A = Z +XA2 +BC

B = 1 +BC

C = Y +AC,

which we call (parameterized) finitary inductive types. Equivalently, we can define these as
nested µ-expression; for example, C can be represented as

µC.Y + (µA.Z +XA2 + (µB.1 + CB)C)C.1

Note that the attribute finitary indicates the absence of function types.
Based on discussions with Swierstra and Morris, Altenkirch [1] notices that the special case

of regular types, i.e. types defined mutually as sums over products where each product contains
at most one recursive variable, corresponds to proof-relevant regular grammars where terminal
symbols commute. 2 They discuss isomorphism of such types in the set model and conjectures
that isomorphism of regular types is decidable, while isomorphism of general finitary inductive
types might be undecidable.

In this talk, we present an algorithm that decides syntactic isomorphism of general finitary
inductive types with respect to the βη-equational theory with strong sums and interpretation of
µ-expressions as initial algebras. We further show that the set model is complete with respect
to this question. This yields the solution to Altenkirch’s conjectures as a special case.

We want to outline one core observation on which the easier set model variant of this
algorithm is based. As is well known, in the set model parameterized finitary inductive types
can equivalently be expresses as a formal power series, e.g. via the intermediate notion of finitary
containers. For example, lists over X (that is µA.1 +AX) admit the representation

1 +X +X2 +X3 +X4 + . . . , (1)

while the series of the type C defined above starts with (we list all summands which have less
than four occurrences of X, Y , Z)

Y + Y 2 + Y Z + 3Y 3 + 3Y 2Z + Y Z2 + (2)

It is possible that certain coefficients of the power series corresponding to a type are not finite;
for example, the natural numbers µA.1+A have a power series over zero variables with a single

1We write XA2 for X ×A×A.
2Confusingly, other authors have introduced the term regular functors over type variables for the concept

we name finitary inductive types here.

1

Isomorphism of Finitary Inductive Types Nicolai Kraus and Christian Sattler

summand of degree 0 with coefficient of cardinality N. This imposes additional difficulties. It
forces us to treat the part consisting of the infinite coefficients separately, a finitary inductive
description of which we call the unguarded part. However, the surgery necessary on a finitary
inductive type to effectively renove the unguarded part is not canonical, leaving a residue type
having only finite power series coefficients that is in general not uniquely determined.

In the set model, two types are isomorphic if the coefficients of their corresponding power
series are equal. The key point now is that the guarded part is always algebraic over a cer-
tain function field, i.e. it is has a corresponding minimal polynomial, a finite representation,
with coefficients in a certain kind of finitely describable algebraic structure, and two of these
finite representations can be algorithmically compared. The guarded part is however selec-
tively masked by the unguarded part, requiring further algebraic machinery involving modules,
lattices, and known methods for constructively dealing with systems of polynomial equations.

Having established isomorphism in the set model between two finitary inductive types,
actually synthesizing one such isomorphism as a syntactic λ-term (and thus establishing com-
pleteness of the set model) requires internalizations of parts of the above arguments into a
theory not even able to reflect many basic inductive arguments. Thus, we want to stress that
the actual main technical effort concerns this aspect. We strive to give our arguments in an
abstract fashion, preferring type- or category-level reasoning wherever possible (e.g., making
use of categorical properties of traversable functors [3]). Still, reducing the amount of low-level
details in this part of our proof warrants further attention.

Our project is superficially related to previous work by Fiore [2]. Crucially, however, our
recursive types are not generic, but initial: instead of just constructing and destructing elements
of inductive types, we have the full power of unique existence of the folding eliminator at hand;
this induces a much stronger equational theory that is more difficult to reason about.

References

[1] Thorsten Altenkirch. Isomorphisms on inductive types (talk), 2005.

[2] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’04, pages 77–88,
New York, NY, USA, 2004. ACM.

[3] Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of traversals. In MSFP, pages
40–49, 2012.

2

