
Semisimplicial Types in Internal Categories with Families∗

Joshua Chen and Nicolai Kraus

University of Nottingham, United Kingdom

Abstract

An open question in homotopy type theory, known as the problem of constructing
semisimplicial types, is whether one can define a function SST : N → Type1 such that
SST(n) is the type of all configurations of triangles and tetrahedra of dimension up to n.
We show in Agda that semisimplicial types can be constructed in any set-based internal
category with families that contains Σ, Π, and a universe. This means that, given a CwF
(Con,Ty, . . .) in type theory, we construct a function SSTc : N → Con.

This project is work in progress, with code available at github.com/jaycech3n/CwF.

Semisimplicial Types. Constructing semisimplicial types [Uni13, Her15] is an open problem
in homotopy type theory and, more generally, in dependent type theory without uniqueness of
identity proofs (UIP). It was first discussed between Voevodsky, Lumsdaine and others during
the Univalent Foundations special year at the IAS Princeton in 2012–13.

A semisimplicial type of dimension 2 is a tuple (A0, A1, A2), where A0 : Type is a type of
points, A1 : A0 → A0 → Type is a family of lines (for any two points), and A2 : (x y z : A0) →
A1 x y → A1 y z → A1 x z → Type is a family of triangle fillers (for any three points and three
lines forming a triangle). Similarly, a semisimplicial type of dimension n should be a tuple
(A0, . . . , An) which represents families of simplices of dimension at most n. The open problem
asks: can one can define a function SST : N → Type1 such that SST(n) is equivalent to the
(record/Σ-) type of such tuples (A0, . . . , An)?

Construction in Internal CwF’s. By an internal CwF, we mean a type Con : Type together
with families Sub : Con → Con → Type, Ty : Con → Type, Tm : (Γ: Con) → TyΓ → Type, and
all the components and equalities which are needed to define a category with families [Dyb95].
We say that such a CwF is set-based if Con, Ty, Sub, Tm are families of sets in the sense of
homotopy type theory, i.e. types satisfying UIP.

The goal of this project is to define, for any set-based internal CwF with Π and Σ-types and a
universe U , a function SSTc : N→ Con in Agda such that SSTc n is the context (A0 : U,A1 : A0 →
A0 → U, . . . , An : . . .).

Motivation: Connecting Open Problems. A second open problem, originally asked by
Shulman [Shu14], is whether homotopy type theory can internalize (“eat” [Cha09]) itself. More
concretely, the problem is to formalize the syntax of HoTT inside HoTT as a set-based CwF,
and to give interpretation functions which send the syntax to actual types and their elements
in the “obvious” way—for example, a context in the CwF should be interpreted as the nested
Σ-type of all its components. For a detailed discussion, see the introduction of [Kra21].

Our current project shows how a solution of this question would give rise to a solution to
the problem of constructing semisimplicial types, as claimed by Shulman [Shu14]: composing
SSTc with the interpretation Con→ Type1, we would get the desired function N→ Type1.

∗This work is supported by the Royal Society, grant reference URF\R1\191055.

https://github.com/jaycech3n/CwF


Semisimplicial Types in Internal Categories with Families Joshua Chen and Nicolai Kraus

Related Work. We are aware of two different scripts which, when given a number n as
input, produce valid Agda code for SST(n)—one script using Haskell [Kra14] and one using
Python [Bru]. Our function SSTc can be seen as a dependently typed version of such a script,
with Agda replaced by an internal CwF and Haskell/Python replaced by Agda. Since Haskell
and Python simply produce strings while SSTc is required to type-check, the latter is significantly
more difficult to define and requires several new ideas.

Our work has analogies with the construction of semisimplicial types in Voevodsky’s homotopy
type system [Voe13] or 2LTT (2-level type theory) [ACK16, ACKS19]. Here, Agda plays the
role of the outer theory1 and the internal CwF the role of the inner (“fibrant”) one. However,
our internal CwF is too minimalistic (e.g. does not contain finite types) to mimic the direct
construction of [ACK16]. Moreover, 2LTT allows one to first formulate a type in the outer
theory and prove its fibrancy afterwards, a strategy which is not possible in our setting.

It is known that semisimplicial sets can be constructed in homotopy type theory, i.e. we can
define a function SST0 : N→ Type1 which only considers sets of points, sets of lines, and so on.
Although our CwF’s are based on sets, this is unrelated; since our CwF’s are not assumed to
have an identity type, the notion of truncatedness does not exist for internal types. The fact
that Con and TyΓ are sets corresponds to the fact that judgmental equality is proof-irrelevant.

Formalization of the Construction. Using the HoTT-Agda library [SH12] we formalize set-
based CwF’s as records with fields Con, Sub, Ty, Tm, the usual operations thereon, and equations
given by their usual presentation as a generalized algebraic theory (see e.g. Fig. 1 of [Kra21]).
Since we are motivated by the goal of internalizing constructions in generic homotopy type theory,
where many CwF’s (such as the formalized syntax proposed by Altenkirch and Kaposi [AK16])
do not satisfy additional definitional equalities, we avoid any use of rewriting pragmas. Our
CwF’s are further equipped with internal type formers Π̂ and Σ̂, as well as a family U of base
types (polymorphic over contexts Γ) together with decoding function el : TmΓU → TyΓ. We
then define SSTc 0 := U and SSTc (n+ 1) :=

(
SSTc n , (Mn →̂ U)

)
by mutual induction with

the “matching object” M : (n : N)→ Ty (SSTc n), where →̂ is the function type in the internal
CwF. The main difficulty lies in defining the type (Mn) of ∂∆n+1-shaped tuples indexed over
SSTc n.

A high-level description of our approach to this is as follows. We define Mn := Sk
(
n +

1, n,
(
n+2
n+1

))
, where

Sk : (b h t : N)→ Ty (SSTc h) for 0 ≤ h < b, 1 ≤ t ≤
(
b+1
h+1

)
encodes, as a nested internal Σ̂-type Sk b h t, the subfunctor of the representable functor ∆+[b]2

which omits all face maps [i]→ [b] for i > h, as well as those face maps [h]→ [b] above the t-th
(ordered via a bijection ϕ : Fin

(
b+1
h+1

) ∼= ∆+([h], [b])). The intuition is that Sk b h t presents the
partial h-dimensional boundary of the b-simplex given by “shape” (b, h, t). The point of this is
to allow us to define, by induction on h and t,

Sk b h t := Σ̂[σ : Sk b h′ t′]
(
Ah(inter σ ϕ(t))

)
,

where (h′, t′) is the lexicographic predecessor of (h, t) and inter σ f picks out the subtuple of
σ corresponding to the face f . This intersection function inter is, again, to be constructed by
induction on the indices b, h, t. This is work in progress.

1However, we do not assume UIP in Agda, as this would make the connection with type theory eating itself
impossible. The strictness that seems to be needed to construct semisimplicial types is satisfied in our case
because the internal CwF is set-based.

2∆+ := ∆ without degeneracies, i.e. the category of finite non-empty sets and strictly increasing functions.

2



Semisimplicial Types in Internal Categories with Families Joshua Chen and Nicolai Kraus

References

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending Homotopy Type
Theory with Strict Equality. In 25th EACSL Annual Conference on Computer Science Logic
(CSL 2016), volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages
21:1–21:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[ACKS19] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-Level Type
Theory and Applications. ArXiv, 2019. Available online at https://arxiv.org/abs/1705.

03307.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Type Theory in Type Theory Using Quotient
Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16, page 18–29, New York, NY, USA, 2016.
Association for Computing Machinery.

[Bru] Guillaume Brunerie. A Python script generating Agda code for semi-simplicial types,
truncated at any given level. Available at https://guillaumebrunerie.github.io/other/

semisimplicial.py. Accessed 23 Apr 2021.

[Cha09] James Chapman. Type Theory Should Eat Itself. Electronic Notes in Theoretical Computer
Science, 228:21–36, 2009. Proceedings of the International Workshop on Logical Frameworks
and Metalanguages: Theory and Practice (LFMTP 2008).

[Dyb95] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for
Proofs and Programs (TYPES), volume 1158 of Lecture Notes in Computer Science, pages
120–134. Springer-Verlag, 1995.

[Her15] Hugo Herbelin. A dependently-typed construction of semi-simplicial types. Mathematical
Structures in Computer Science, 25(5):1116–1131, 2015.

[Kra14] Nicolai Kraus. A Haskell script to generate the type of n-truncated semi-simplicial types, 2014.
Available at https://nicolaikraus.github.io/docs/generateSemiSimp.hs. Accessed 23
Apr 2021.

[Kra21] Nicolai Kraus. Internal ∞-categorical models of dependent type theory: Towards 2LTT
eating HoTT, 2021. Available online at https://arxiv.org/abs/2009.01883, to appear in
the proceedings of LICS ’21.

[SH12] Andrew Swan and the HoTT and UF community. Homotopy type theory, Since 2012. Fork
of the original Agda library. Available online at https://github.com/awswan/HoTT-Agda/

tree/agda-2.6.1-compatible.

[Shu14] Michael Shulman. Homotopy type theory should eat itself (but so far, it’s too
big to swallow), 2014. Blog post, https://homotopytypetheory.org/2014/03/03/

hott-should-eat-itself.

[Uni13] The Univalent Foundations Program. Semi-simplicial types, 2013. Wiki page of the Univalent
Foundations special year at the Institute for Advanced Study, Princeton. Available at
https://ncatlab.org/ufias2012/published/Semi-simplicial+types.

[Voe13] Vladimir Voevodsky. A simple type system with two identity types, 2013. Unpublished note
available online at https://www.math.ias.edu/vladimir/Lectures.

3

https://arxiv.org/abs/1705.03307
https://arxiv.org/abs/1705.03307
https://guillaumebrunerie.github.io/other/semisimplicial.py
https://guillaumebrunerie.github.io/other/semisimplicial.py
https://nicolaikraus.github.io/docs/generateSemiSimp.hs
https://arxiv.org/abs/2009.01883
https://github.com/awswan/HoTT-Agda/tree/agda-2.6.1-compatible
https://github.com/awswan/HoTT-Agda/tree/agda-2.6.1-compatible
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself
https://ncatlab.org/ufias2012/published/Semi-simplicial+types
https://www.math.ias.edu/vladimir/Lectures

