A Lambda Term Representation Inspired by Ordered Linear Logic

Andreas Abel¹ Nicolai Kraus²

¹Department of Computer Science Ludwig-Maximilians-University Munich, Germany

> ²School of Computer Science University of Nottingham, UK

> > 26.08.2011

Outline

Outline

- What was our aim?
- Ordered terms
- Specification of values and evaluation
- Transformation between representations
- Section 2 Constraints and results

Motivation

$(\lambda x.\lambda y.aby)gf$

Motivation

$(\lambda x.\lambda y. a b y) g f$ $\longrightarrow (\lambda y. a b y)[g/x] f$

Motivation

Motivation

Motivation

 $(\lambda x.\lambda y. a b y) g f$ $\longrightarrow (\lambda y. a b y)[g/x] f$ $\longrightarrow (a b y)[g/x, f/y]$ $\longrightarrow (a b) [g/x, f/y] y [g/x, f/y]$ $\longrightarrow a [g/x, f/y] b [g/x, f/y] f$

Motivation

 $(\lambda x.\lambda y.aby)gf$ $(\lambda y. a b y)[g/x] f$ \longrightarrow (aby)[g/x, f/y] \rightarrow \rightarrow (ab)[g/x, f/y] y[g/x, f/y] $\rightarrow a[g/x, f/y] b[g/x, f/y] f$ \longrightarrow abf

Observed Problem

• space leak:

(ab)[g/x, f/y]

Observed Problem

• space leak:

(a b) [g/x, f/y] $\longrightarrow a [g/x, f/y] b [g/x, f/y]$

• similar for other representation (like De Bruijn indices)

Observed Problem

• space leak:

$$(ab) [g/x, f/y]$$
$$\longrightarrow a [g/x, f/y] b [g/x, f/y]$$

- similar for other representation (like De Bruijn indices)
- \bullet possible solution: make all relevant information available at the λ

Our suggestion: Ordered Terms

t, u ::=

t, u ::= x free variable (named x)

.

Abstraction and Application

Meaning of $\lambda^{[k_1,...,k_n]}$. *t*: Bind the unbound • at positions

$$k_1 + 1$$

 $k_1 + k_2 + 2$
 $k_1 + k_2 + k_3 + 3$
...

Meaning of $t^m u$: number of unbound • in t equals m

Example: The S combinator

$$\lambda x. \lambda y. \lambda z. x z (y z)$$
$$\lambda^{[0]}. \lambda^{[1]}. \lambda^{[1,1]}. \bullet^{1} \bullet^{2} (\bullet^{1} \bullet)$$

Example: Evaluation

$$\left(\lambda^{[0]}.\,\lambda^{[1]}.\,\lambda^{[1,1]}.\bullet^{1}\bullet^{2}\left(\bullet^{1}\bullet\right)\right){}^{0}g\,{}^{0}f\,{}^{0}n$$

Example: Evaluation

$$(\lambda^{[0]}, \lambda^{[1]}, \lambda^{[1,1]}, \bullet^{1} \bullet^{2} (\bullet^{1} \bullet)) \circ g \circ f \circ n$$
$$\longrightarrow \qquad (\lambda^{[1]}, \lambda^{[1,1]}, \bullet^{1} \bullet^{2} (\bullet^{1} \bullet))[g] f n$$

Example: Evaluation

$$\begin{aligned} & (\lambda^{[0]}, \lambda^{[1]}, \lambda^{[1,1]}, \bullet^1 \bullet^2 (\bullet^1 \bullet)) \circ g \circ f \circ n \\ & \longrightarrow \qquad (\lambda^{[1]}, \lambda^{[1,1]}, \bullet^1 \bullet^2 (\bullet^1 \bullet)) [g] \quad f n \\ & \longrightarrow \qquad (\lambda^{[1,1]}, \bullet^1 \bullet^2 (\bullet^1 \bullet)) [g, f] \quad n \end{aligned}$$

Example: Evaluation

$$\begin{aligned} & (\lambda^{[0]} \cdot \lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^1 \bullet^2 (\bullet^1 \bullet)) \, {}^0 g^0 f^0 n \\ & \longrightarrow \qquad (\lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^1 \bullet^2 (\bullet^1 \bullet)) [g] f n \\ & \longrightarrow \qquad (\lambda^{[1,1]} \cdot \bullet^1 \bullet^2 (\bullet^1 \bullet)) [g, f] n \\ & \longrightarrow \qquad (\bullet^1 \bullet^2 (\bullet^1 \bullet)) [g, n, f, n] \end{aligned}$$

Example: Evaluation

$$\begin{aligned} & (\lambda^{[0]} \cdot \lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} (\bullet^{1} \bullet)) \circ g \circ f \circ n \\ & \longrightarrow \qquad (\lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} (\bullet^{1} \bullet)) [g] \quad f n \\ & \longrightarrow \qquad (\lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} (\bullet^{1} \bullet)) [g, f] \quad n \\ & \longrightarrow \qquad (\bullet^{1} \bullet^{2} (\bullet^{1} \bullet)) [g, n, f, n] \\ & \longrightarrow \qquad (\bullet^{1} \bullet) [g, n] \quad (\bullet^{1} \bullet) [f, n] \end{aligned}$$

Example: Evaluation

$$\begin{array}{ccc} \left(\lambda^{[0]} \cdot \lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right)^{0} g^{0} f^{0} n \\ \longrightarrow & \left(\lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g] f n \\ \longrightarrow & \left(\lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g, f] n \\ \longrightarrow & \left(\bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g, n, f, n] \\ \longrightarrow & \left(\bullet^{1} \bullet\right) [g, n] & \left(\bullet^{1} \bullet\right) [f, n] \\ \longrightarrow & \bullet [g] \bullet [n] & \left(\bullet [f] \bullet [n]\right) \end{array}$$

Example: Evaluation

$$\begin{array}{ccc} \left(\lambda^{[0]} \cdot \lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right)^{0} g^{0} f^{0} n \\ \longrightarrow & \left(\lambda^{[1]} \cdot \lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g] f n \\ \longrightarrow & \left(\lambda^{[1,1]} \cdot \bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g, f] n \\ \longrightarrow & \left(\bullet^{1} \bullet^{2} \left(\bullet^{1} \bullet\right)\right) [g, n, f, n] \\ \longrightarrow & \left(\bullet^{1} \bullet\right) [g, n] & \left(\bullet^{1} \bullet\right) [f, n] \\ \longrightarrow & \bullet [g] \bullet [n] & \left(\bullet [f] \bullet [n]\right) \\ \longrightarrow & g n (f n) \end{array}$$

Invariant:

length of substitution list = number of unbound ${\ensuremath{\,\bullet\,}}$

Insertion Operation

$$[g, f] \rightsquigarrow [g, n, f, n]$$

Operation:

$$\vec{v}^{w/\vec{k}} = [v_1, v_2, \dots, v_n]^{w/[k_1, \dots, k_m]}$$
$$:= [v_1, \dots, v_{k_1}, w, v_{k_1+1}, \dots, v_{k_1+k_2}, w, \dots]$$

$$v, w ::= x \vec{v}$$
 large application $| (\lambda^{\vec{k}}. t)^{\vec{v}}$ closure

Evaluation

$[x]_{[]} = x$

Evaluation

$[x]_{[]} = x$ $[\bullet]_{[v_1]} = v_1$

Evaluation

$$[x]_{[]} = x [\bullet]_{[v_1]} = v_1$$

$$\llbracket \lambda^{\vec{k}} \cdot t \rrbracket_{\vec{v}} = (\lambda^{\vec{k}} \cdot t)^{\vec{v}}$$

Evaluation

$$\begin{split} [x]_{[]} &= x \\ [\bullet]_{[v_1]} &= v_1 \\ [t^k u]_{[v_1,...,v_n]} &= [t]_{[v_1,...,v_k]} @ [u]_{[v_{k+1},...,v_n]} \\ [\lambda^{\vec{k}} \cdot t]_{\vec{v}} &= (\lambda^{\vec{k}} \cdot t)^{\vec{v}} \end{split}$$

Evaluation

$$\begin{split} \llbracket x \rrbracket_{[]} &= x \\ \llbracket \bullet \rrbracket_{[v_1]} &= v_1 \\ \llbracket t^k u \rrbracket_{[v_1,...,v_n]} &= \llbracket t \rrbracket_{[v_1,...,v_k]} @ \llbracket u \rrbracket_{[v_{k+1},...,v_n]} \\ \llbracket \lambda^{\vec{k}} \cdot t \rrbracket_{\vec{v}} &= (\lambda^{\vec{k}} \cdot t)^{\vec{v}} \\ (x \vec{v}) @ w &= x [\vec{v}, w] \\ (\lambda^{\vec{k}} \cdot t)^{\vec{v}} @ w &= \llbracket t \rrbracket_{\vec{v}^{w/\vec{k}}} \end{split}$$

- Γ : Set of variable names
- $\cdot \lhd \mathsf{\Gamma} \rhd \cdot [\cdot] \ \subset \ \mathsf{Terms} \times \mathsf{orderedTerms} \times \mathsf{SubstitutionLists}$
- $M \lhd \Gamma \rhd u[\vec{x}] : M$ corresponds to $u[\vec{x}]$ (in context Γ)

- Γ : Set of variable names
- $\cdot \lhd \mathsf{\Gamma} \rhd \cdot [\cdot] \ \subset \ \mathsf{Terms} \times \mathsf{orderedTerms} \times \mathsf{SubstitutionLists}$
- $M \lhd \Gamma \rhd u[\vec{x}] : M$ corresponds to $u[\vec{x}]$ (in context Γ)

 $\frac{x \in \Gamma}{x \lhd \Gamma \triangleright \bullet[x]}$ $\frac{x \notin \Gamma}{x \lhd \Gamma \triangleright x[]}$

- Γ : Set of variable names
- $\cdot \lhd \mathsf{\Gamma} \rhd \cdot [\cdot] \ \subset \ \mathsf{Terms} \times \mathsf{orderedTerms} \times \mathsf{SubstitutionLists}$
- $M \lhd \Gamma \rhd u[\vec{x}] : M$ corresponds to $u[\vec{x}]$ (in context Γ)

$$\frac{M \lhd \Gamma \rhd t[\vec{x}] \quad N \lhd \Gamma \rhd u[\vec{y}] \quad \text{length}(\vec{x}) = m}{M \, N \lhd \Gamma \rhd (t^m \, u)[\vec{x}, \vec{y}]}$$

- Γ : Set of variable names
- $\cdot \lhd \mathsf{\Gamma} \rhd \cdot [\cdot] \ \subset \ \mathsf{Terms} \times \mathsf{orderedTerms} \times \mathsf{SubstitutionLists}$

 $M \lhd \Gamma \rhd u[\vec{x}] : M$ corresponds to $u[\vec{x}]$ (in context Γ)

$$\frac{M \lhd (\Gamma \cup \{z\}) \rhd t[\vec{x}^{z/\vec{k}}] \qquad z \notin \vec{x}}{\lambda z. \ M \lhd \Gamma \rhd (\lambda^{\vec{k}}. t)[\vec{x}]}$$

 \Rightarrow computable bijection

• implementation of the described representation in Haskell

Experiments

- implementation of the described representation in Haskell
- substitution lists: Lists and Trees tested

Experiments

- implementation of the described representation in Haskell
- substitution lists: Lists and Trees tested
- two standard evaluation algorithms for comparison:
 - Simple closures: contexts as maps
 - Beta normal values

Experiments

- implementation of the described representation in Haskell
- substitution lists: Lists and Trees tested
- two standard evaluation algorithms for comparison:
 - Simple closures: contexts as maps
 - Beta normal values
- experiments: large terms of the Edinburgh Logical Framework typechecked
 - proof terms kindly provided by Andrew W. Appel, Princeton University
 - 8 GB, AMD Phenom II X4 B95 (3 GHz, one core used)

6000 lines (3.8 MB)

	· · · ·		
	time (sec)	space (MB)	
Ordered (trees)	18.9	1111	
Ordered (lists)	18.6	1114	
Simple Closures	18.5	1152	
Beta Normal Values	27.6	2034	

10000 lines (12.9 MB)

	time (sec)	space (MB)
Ordered (trees)	61.0	3230
Ordered (lists)	60.6	3237
Simple Closures	60.0	3302
Beta Normal Values	98.7	5878

12000 lines (17.8 MB)

	time (sec)	space (MB)
Ordered (trees)	84.3	5096
Ordered (lists)	83.8	5103
Simple Closures	83.6	5226
Beta Normal Values	137.7	8513

whole file - ca. 12500 lines (20.9 MB)

	time (sec)	space (MB)
Ordered (trees)	108.4	8877
Ordered (lists)	94.8	4948
Simple Closures	94.3	5068
Beta Normal Values	169.8	9044
(Twelf r1697)	(ca. 22)	(2720)

Related Work

- Fernández, Mackie, Sinot (2005): Lambda-Calculus with Director Strings
- Sinot (2005): Director Strings Revisited: A Generic Approach to the Efficient Representation of Free Variables in Higher-order Rewriting
- Gopalan Nadathur (2001): A Fine-Grained Notation for Lambda Terms and Its Use in Intensional Operations
- Liang, Nadathur, Qi (2005): Choices in representation and reduction strategies for lambda terms in intensional contexts