
Univalent Higher Categories via
Complete Semi-Segal Types

Paolo Capriotti Nicolai Kraus

POPL’18, Los Angeles, Wed 10 Jan 2018



Setting
Martin-Löf style type theory

formal systems of terms and dependent types,
e.g.: Π(n : N).Σ(p, q : Primes).(p+ q = n+ n+ 4)

What is it good for?
Programming — Proof assistants — Foundation

idris-lang.org

Agda
wiki.portal.

chalmers.se/agda

L∃∃∃∀∀∀N
leanprover.github.io Coq

coq.inria.fr

What do we want to implement?

Categories



Setting
Martin-Löf Homotopy type theory (no UIP)

formal systems of terms and dependent types,
e.g.: Π(n : N).Σ(p, q : Primes).(p+ q = n+ n+ 4)

What is it good for?
Programming — Proof assistants — Foundation

idris-lang.org

Agda
wiki.portal.

chalmers.se/agda

L∃∃∃∀∀∀N
leanprover.github.io Coq

coq.inria.fr

What do we want to implement?

Categories



Defining categories, first attempt

Ob : Type

Hom : Ob→ Ob→ Type

◦ : Hom(b, c)→ Hom(a, b)

→ Hom(a, c)

α : h ◦ (g ◦ f) = (h ◦ g) ◦ f

Id : Π(a : Ob).Hom(a, a)

idL : Id ◦ f = f

idR : f ◦ Id = f

What’s wrong
with this?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

I objects: pairs (a, f),
a : Ob, f : Hom(a, x)

I morphisms: pairs
(h, q) where
h : Hom(a, b) and
q : f = g ◦ h

a

x
f

a b

x

q
f g

h

I composition: needs ◦ and α



Defining categories, first attempt

Ob : Type

Hom : Ob→ Ob→ Type

◦ : Hom(b, c)→ Hom(a, b)

→ Hom(a, c)

α : h ◦ (g ◦ f) = (h ◦ g) ◦ f

Id : Π(a : Ob).Hom(a, a)

idL : Id ◦ f = f

idR : f ◦ Id = f

What’s wrong
with this?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

I objects: pairs (a, f),
a : Ob, f : Hom(a, x)

I morphisms: pairs
(h, q) where
h : Hom(a, b) and
q : f = g ◦ h

a

x
f

a b

x

q
f g

h

I composition: needs ◦ and α



Defining categories, first attempt

Ob : Type

Hom : Ob→ Ob→ Type

◦ : Hom(b, c)→ Hom(a, b)

→ Hom(a, c)

α : h ◦ (g ◦ f) = (h ◦ g) ◦ f

Id : Π(a : Ob).Hom(a, a)

idL : Id ◦ f = f

idR : f ◦ Id = f

What’s wrong
with this?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

I objects: pairs (a, f),
a : Ob, f : Hom(a, x)

I morphisms: pairs
(h, q) where
h : Hom(a, b) and
q : f = g ◦ h

a

x
f

a b

x

q
f g

h

I composition: needs ◦ and α
I associativity: needs α and

???



Defining categories, first attempt

Ob : Type

Hom : Ob→ Ob→ Type

◦ : Hom(b, c)→ Hom(a, b)

→ Hom(a, c)

α : h ◦ (g ◦ f) = (h ◦ g) ◦ f

Id : Π(a : Ob).Hom(a, a)

idL : Id ◦ f = f

idR : f ◦ Id = f

What’s wrong
with this?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

I objects: pairs (a, f),
a : Ob, f : Hom(a, x)

I morphisms: pairs
(h, q) where
h : Hom(a, b) and
q : f = g ◦ h

a

x
f

a b

x

q
f g

h

I composition: needs ◦ and α
I associativity: needs α and
MacLane’s pentagon (familiar
from bicategories)



How to solve the problem?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

Naïve solution: Add the pentagon to
the definition of a category.

Problem: Now we can derive associativity for
C/x, but we cannot derive the pentagon for C/x.
For this, we would need the associahedron K5.

And so on! Forever! This is because types carry the structure
of ∞-categories (∞-groupoids).
How to express this? And what about identities?

Side remark: Ahrens-Kapulkin-Shulman (2015): categories
where morphisms satisfy UIP. These are well-behaved, but im-
portant examples are not captured.



How to solve the problem?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

Naïve solution: Add the pentagon to
the definition of a category.

Problem: Now we can derive associativity for
C/x, but we cannot derive the pentagon for C/x.
For this, we would need the associahedron K5.

And so on! Forever! This is because types carry the structure
of ∞-categories (∞-groupoids).
How to express this? And what about identities?

Side remark: Ahrens-Kapulkin-Shulman (2015): categories
where morphisms satisfy UIP. These are well-behaved, but im-
portant examples are not captured.



How to solve the problem?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

Naïve solution: Add the pentagon to
the definition of a category.

Problem: Now we can derive associativity for
C/x, but we cannot derive the pentagon for C/x.
For this, we would need the associahedron K5.

And so on! Forever! This is because types carry the structure
of ∞-categories (∞-groupoids).
How to express this? And what about identities?

Side remark: Ahrens-Kapulkin-Shulman (2015): categories
where morphisms satisfy UIP. These are well-behaved, but im-
portant examples are not captured.



How to solve the problem?

((kh)g)f(k(hg))f

k((hg)f)

k(h(gf))

(kh)(gf)

Exercise: Given such a category
C ≡ (Ob,Hom, ◦, . . .), and x : Ob,
try to define the slice category C/x.

Naïve solution: Add the pentagon to
the definition of a category.

Problem: Now we can derive associativity for
C/x, but we cannot derive the pentagon for C/x.
For this, we would need the associahedron K5.

And so on! Forever! This is because types carry the structure
of ∞-categories (∞-groupoids).
How to express this? And what about identities?

Side remark: Ahrens-Kapulkin-Shulman (2015): categories
where morphisms satisfy UIP. These are well-behaved, but im-
portant examples are not captured.



Contributions

A definition for higher categories in type theory: Complete
semi-Segal types. More precisely: (n, 1)-categories, n ≤ 2 done
explicitly, n externally fixed, (∞, 1) possible in some extensions of
“standard HoTT”.

Ingredients:
I Semisimplicial types (HoTT 2012) give raw data
I Segal condition (Rezk 2001) gives coherent composition
I Completeness (Lurie 2009 / Harpaz 2015), gives

identity structure which moreover is univalent.

For the special case of n ≤ 2, we show that our definition
is equivalent to the “manual” definition (e.g. Ahrens-Kapulkin-
Shulman 2015), in Agda.



Contributions

A definition for higher categories in type theory: Complete
semi-Segal types. More precisely: (n, 1)-categories, n ≤ 2 done
explicitly, n externally fixed, (∞, 1) possible in some extensions of
“standard HoTT”.

Ingredients:
I Semisimplicial types (HoTT 2012) give raw data
I Segal condition (Rezk 2001) gives coherent composition
I Completeness (Lurie 2009 / Harpaz 2015), gives

identity structure which moreover is univalent.

For the special case of n ≤ 2, we show that our definition
is equivalent to the “manual” definition (e.g. Ahrens-Kapulkin-
Shulman 2015), in Agda.



Contributions

A definition for higher categories in type theory: Complete
semi-Segal types. More precisely: (n, 1)-categories, n ≤ 2 done
explicitly, n externally fixed, (∞, 1) possible in some extensions of
“standard HoTT”.

Ingredients:
I Semisimplicial types (HoTT 2012) give raw data
I Segal condition (Rezk 2001) gives coherent composition
I Completeness (Lurie 2009 / Harpaz 2015), gives

identity structure which moreover is univalent.

For the special case of n ≤ 2, we show that our definition
is equivalent to the “manual” definition (e.g. Ahrens-Kapulkin-
Shulman 2015), in Agda.



Semisimplicial types
A (2-restricted) semisimplicial type consists of:

I A type A0 of points,

A0 : Type

I For any pair of points x, y : A0, a type
of lines,

A1 : A0 → A0 → Type

I For any “empty triangle” a type of
fillers,
A2 : Π(a, b, c : A0).A1(b, c)→ A1(a, b)→ A1(a, c)→ Type.



Semisimplicial types
A (2-restricted) semisimplicial type consists of:

I A type A0 of points,

A0 : Type

I For any pair of points x, y : A0, a type
of lines,

A1 : A0 → A0 → Type

I For any “empty triangle” a type of
fillers,
A2 : Π(a, b, c : A0).A1(b, c)→ A1(a, b)→ A1(a, c)→ Type.



Semisimplicial types
A (2-restricted) semisimplicial type consists of:

I A type A0 of points,

A0 : Type

I For any pair of points x, y : A0, a type
of lines,

A1 : A0 → A0 → Type

I For any “empty triangle” a type of
fillers,
A2 : Π(a, b, c : A0).A1(b, c)→ A1(a, b)→ A1(a, c)→ Type.



Semisimplicial types
A (2-restricted) semisimplicial type consists of:

I A type A0 of points,

A0 : Type

I For any pair of points x, y : A0, a type
of lines,

A1 : A0 → A0 → Type

I For any “empty triangle” a type of
fillers,
A2 : Π(a, b, c : A0).A1(b, c)→ A1(a, b)→ A1(a, c)→ Type.



Comparison
Category Semisimplicial type

Ob : Type A0 : Type

Hom : Ob→ Ob→ Type A1 : A0 → A0 → Type

◦ : Π(a, b, c : Ob).Hom(b, c) A2 : Π(a, b, c : A0).A1(b, c)

→ Hom(a, b)→ Hom(a, c) → A1(a, b)→ A1(a, c)→ Type



Comparison
Category Semisimplicial type

Ob : Type A0 : Type

Hom : Ob→ Ob→ Type A1 : A0 → A0 → Type

◦ : Π(a, b, c : Ob).Hom(b, c) A2 : Π(a, b, c : A0).A1(b, c)

→ Hom(a, b)→ Hom(a, c) → A1(a, b)→ A1(a, c)→ Type

h2 : ???



Comparison
Category Semisimplicial type

Ob : Type A0 : Type

Hom : Ob→ Ob→ Type A1 : A0 → A0 → Type

◦ : Π(a, b, c : Ob).Hom(b, c) A2 : Π(a, b, c : A0).A1(b, c)

→ Hom(a, b)→ Hom(a, c) → A1(a, b)→ A1(a, c)→ Type

h2 : ???

in general:
X ' P : X → Type

isContr(Σ(x : X).P (x))



Comparison
Category Semisimplicial type

Ob : Type A0 : Type

Hom : Ob→ Ob→ Type A1 : A0 → A0 → Type

◦ : Π(a, b, c : Ob).Hom(b, c) A2 : Π(a, b, c : A0).A1(b, c)

→ Hom(a, b)→ Hom(a, c) → A1(a, b)→ A1(a, c)→ Type

h2 : Π(a, b, c : A0)(g : A1(b, c))

(f : A1(a, b)).

isContr(Σ(h : A1(a, c)).

A2(f, g, h))

in general:
X ' P : X → Type

isContr(Σ(x : X).P (x))



Comparison
Category Semisimplicial type

Ob : Type A0 : Type

Hom : Ob→ Ob→ Type A1 : A0 → A0 → Type

◦ : Π(a, b, c : Ob).Hom(b, c) A2 : Π(a, b, c : A0).A1(b, c)

→ Hom(a, b)→ Hom(a, c) → A1(a, b)→ A1(a, c)→ Type

h2 : Π(a, b, c : A0)(g : A1(b, c))

h2 says: even horn (f, g) (f : A1(a, b)).

has unique filler: isContr(Σ(h : A1(a, c)).

A2(f, g, h))

f

g

f

gh



Segal condition

Def.: A semisimplicial type (A0, . . . , An) fulfils the Segal condi-
tion if, for every 2 ≤ k ≤ n, every Λk

1-horn has a unique filler.

k = 2: (composition!)

k = 3: (associativity!)

k = 4 (cannot draw it) gives the pentagon equality.

Disclaimer: Of course, the connection between horn fillers and
composition structure is known (Joyal/Rezk/Lurie/. . . ), we merely
checked that this works in type theory.



Segal condition

Def.: A semisimplicial type (A0, . . . , An) fulfils the Segal condi-
tion if, for every 2 ≤ k ≤ n, every Λk

1-horn has a unique filler.

k = 2: (composition!)

k = 3: (associativity!)

k = 4 (cannot draw it) gives the pentagon equality.

Disclaimer: Of course, the connection between horn fillers and
composition structure is known (Joyal/Rezk/Lurie/. . . ), we merely
checked that this works in type theory.



Completeness

Have: composition structure.
Now: identities.
Strategy: Lurie (2009) and Harpaz (2015).

Def: e : A1(x, y) is neutral if all horns of the form

0 1

2

e

and
0 1

2

e have unique fillers.

A semisimplicial type is complete if every point has exactly one
outgoing neutral edge.

We get identities on x like this:
x x

ee
x x

id

ee



Completeness

Have: composition structure.
Now: identities.
Strategy: Lurie (2009) and Harpaz (2015).

Def: e : A1(x, y) is neutral if all horns of the form

0 1

2

e

and
0 1

2

e have unique fillers.

A semisimplicial type is complete if every point has exactly one
outgoing neutral edge.

We get identities on x like this:
x x

ee
x x

id

ee



Conclusions
Def: A complete semi-Segal n-type is a semisimplicial
type (A0, . . . , An+2) that satisfies:
• Segal condition
• completeness

 (propositions)
• truncation (highest level trivial)

A definition on its own is not very useful. Potential
applications of higher categories (all wip):

I formalized higher categorical model of type theory
(∞-CwF)

I constructing higher inductive types
I . . . ?

Thank you for your attention!


