
Higher Inductive Types without
Recursive Higher Constructors

MGS Christmas Seminar
Birmingham

Nicolai Kraus

University of Nottingham

17/12/15



Inductive types in Martin-Löf type theory

natural numbers
N is a type with constructors

z ∶ N
S ∶ N → N

propositional equality
x = y is a type (for x, y ∶ A).
Constructor:

refl ∶ ∀x. x = x

N-induction
for a family P ∶ N → U ,
P (z)
∀n. P (n) → P (Sn)

ind⇒ ∀n. P (n)

=-induction
for P ∶ (Σx,y ∶Ax = y) → U ,

∀x. P (x, x, reflx)
ind⇒ ∀xyq. P (x, y , q)



Propositional equality (“=”), examples
symmetry

sym ∶ ∀xy . x = y → y = x
Construction: sym(x, x, reflx) ∶≡ reflx .

transitivity

trans ∶ ∀xyz. x = y → y = z → x = z
Construction: trans(x, x, x, reflx , reflx) ∶≡ reflx .

“What’s the point? Everything is refl anyway...”
⇒ Try to prove uniqueness of identity proofs (UIP), i.e.

∀xy . ∀(p, q ∶ x = y). p = q
“Sure, assume (x, y , p) is just (x, x, reflx), then what we
need is ∀x.∀(q ∶ x = x). reflx = q and then. . . oh, we are
stuck.”
Fact: UIP is not derivable (Hofmann-Streicher 1998).



Why not add UIP as an axiom?
Arguments for homotopy type theory (“alternative” to UIP):
○ want: if A ≃ B, then A = B (without forgetting how)
e.g.: we want to substitute different representations of
N for each other!
⇒ univalence (more abstract, more convenient to use)

○ “types are [behaved like] spaces”: transport intuition
and results between homotopy theory and type theory;
allows other constructions, including synthetic
homotopy theory

○ equalities are paths, and all type-theoretic statements
are up to homotopy and continuous transformations –
everything automatically “non-evil”, it’s beautiful!

○ by the way:
homotopy (type theory)
(homotopy type) theory



Higher inductive types (HITs)

Constructors can construct elements, higher constructors
can construct equalities. Example:

real numbers
R is a type with constructors

rat ∶ Q → R
lim ∶ (f ∶ N → R) → isCauchy(f ) → R
quot ∶ (u, v ∶ R) → u ∼ v → u = v

isCauchy and ∼ need to be defined at the same time (not
shown here).

This is better behaved than a quotient – our R is complete!



Higher inductive types (HITs)

circle

S1 is given by the constructors

base ∶ S1
loop ∶ base =S1 base

S1 behaves as one expects. E.g., its fundamental group is
equivalent to Z. The fundamental group is essentially
base =S1 base.



Higher inductive types (HITs)

Propositional Truncation (“Squash”, “bracket types”)

For a type A, the type ∥A∥ is given by

∣−∣ ∶ A → ∥A∥
h ∶ (x, y ∶ ∥A∥) → x =∥A∥ y

○ all elements of ∥A∥ are equal

○ ∥A∥ is “the proposition that A holds”

○ can make “non-continuous” statement, e.g.
Πx ∶S1 x = base – contradiction

Πx ∶S1 ∥x = base∥ – provable



Recursive versus Non-Recursive HITs
Propositional Truncation ∥A∥
∣−∣ ∶ A → ∥A∥
h ∶ (x, y ∶ ∥A∥) → x =∥A∥ y

Pseudo-truncation ⟨⟨A⟩⟩
⟨−⟩ ∶ A → ⟨⟨A⟩⟩
t ∶ (x, y ∶ A) → ⟨x⟩ =⟨⟨A⟩⟩ ⟨y ⟩

universal property ∥A∥
∥A∥ → B
A → B

if B is propositional

universal property ⟨⟨A⟩⟩
⟨⟨A⟩⟩ → B

Σ (f ∶ A → B) .wconst(f )
for any B

note: wconst(f ) ∶≡ Πx,y ∶A f a = f b
⟨⟨A⟩⟩ has has several names:

○ Altenkirch: “constant map classifier” (see u.p.)

○ Coquand-Escardó: “generalised circle” (⟨⟨1⟩⟩ ≃ S1)
○ van Doorn: “one-step truncation” (later)



Recursive versus Non-Recursive HITs

Propositional Truncation ∥A∥
∣−∣ ∶ A → ∥A∥
h ∶ (x, y ∶ ∥A∥) → x =∥A∥ y

Pseudo-truncation ⟨⟨A⟩⟩
⟨−⟩ ∶ A → ⟨⟨A⟩⟩
t ∶ (x, y ∶ A) → x =⟨⟨A⟩⟩ y

universal property ∥A∥
∥A∥ → B
A → B

if B is propositional

universal property ⟨⟨A⟩⟩
⟨⟨A⟩⟩ → B

Σ (f ∶ A → B) .wconst(f )
for any B

note: wconst(f ) ∶≡ Πx,y ∶A f a = f b

Recursion in path constructors makes elimination
principles difficult to use! Do we actually need it?



Another HIT

Sequential colimit
Given an ω-chain

A0
f0Ð→ A1 f1Ð→ A2 f2Ð→ . . . ,

its sequential colimit Aω is given by the constructors

in ∶ (n ∶ N) → An → Aω
glue ∶ (n ∶ N) → (a ∶ An) → inn(a) =Aω inn+1(fna)

This is a non-recursive HIT.



Higher inductive types (HITs)

Theorem (van Doorn)
The sequential colimit of

A
⟨−⟩ÐÐ→ ⟨⟨A⟩⟩ ⟨−⟩ÐÐ→ ⟨⟨⟨⟨A⟩⟩⟩⟩ ⟨−⟩ÐÐ→ ⟨⟨⟨⟨⟨⟨A⟩⟩⟩⟩⟩⟩ ⟨−⟩ÐÐ→ . . .

is propositional (and has the elimination principle of ∥A∥).
Note: ⟨⟨. . . ⟨⟨A⟩⟩ . . .⟩⟩ is very complicated (homotopically).

Theorem (generalisation)

Given a chain A0
f0Ð→ A1 f1Ð→ A2 f2Ð→ . . .. If every fi is weakly

constant, then Aω is propositional (i.e. all its elements are
equal).



Higher truncations
○ For every n ≥ −2, we can define the n-truncation ∥A∥n
as a HIT which trivialises all levels above n

○ to be precise: ∥A∥ is the case n ≡ −1 (index omitted)
○ let’s exchange the recursive constructor for a
non-recursive one: we get general “pseudo-truncations”
⟨⟨A⟩⟩n, one constructor is ⟨−⟩n ∶ A → ⟨⟨A⟩⟩n

○ ⟨−⟩n is not weakly constant in general

Consider the chain

A
⟨−⟩
−1ÐÐÐ→ ⟨⟨A⟩⟩−1

⟨−⟩0ÐÐ→ ⟨⟨⟨⟨A⟩⟩−1⟩⟩0
⟨−⟩1ÐÐ→ ⟨⟨⟨⟨⟨⟨A⟩⟩−1⟩⟩0⟩⟩1

⟨−⟩2ÐÐ→ . . .

Theorem
Every ⟨−⟩n in the above chain is weakly constant (for inhab-
ited A); and the sequential colimit of this chain has all the
properties of ∥A∥.



Chain of higher pseudo-truncations
○ the constructed chain converges: after n steps, the
first n levels are “correct” (i.e. “conditionally
(n − 1)-connected”

○ implies finite elimination principles for truncated types

○ our chain is more minimalistic than van Doorn’s – we
get a strict natural transformation

A ⟨⟨A⟩⟩−1 ⟨⟨⟨⟨A⟩⟩−1⟩⟩0 ⋯

⟨⟨A⟩⟩ ⟨⟨⟨⟨A⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨A⟩⟩⟩⟩⟩⟩ ⋯

⟨−⟩−1 ⟨−⟩0 ⟨−⟩1

⟨−⟩ ⟨−⟩ ⟨−⟩

○ can derive the finite elimination principles for the
chaotic van Doorn chain (any cocone of the second
chain gives one of the first).



Conclusion

Conjecture
Every HIT can be represented without recursive

path-constructors.

○ The general case is expected to be far more difficult.

○ The conjecture is currently not even a precise
statement: what is “every HIT”? – but that’s another
topic. . .

Thank you for your attention!


