Constructions with Non-Recursive Higher Inductive Types

LiCS'16, New York

Nicolai Kraus

University of Nottingham, EU

6 July 2016

Introduction

Setting: Martin-Löf style type theory with Σ , Π , identity types (=), univalent universe(s), higher inducive types ("homotopy type theory")

What are these?

ordinary inductive type: nat \mathbb{N} is a type with constructors zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$ higher inductive type: circle \mathbb{S}^1 is a type with constructors base : \mathbb{S}^1 loop : base = $_{\mathbb{S}^1}$ base

Think of CW complexes. . .

Introduction, II

Should we **really** think of CW complexes?

Propositional Truncation $ A $	Pseudo-truncation 《 A 》
$ - :A \to A $	$\langle - \rangle : A \rightarrow \langle\!\!\langle A \rangle\!\!\rangle$
$h: (x, y: \ A\) \to x =_{\ A\ } y$	$t: (\mathbf{x}, \mathbf{y}: \mathbf{A}) \to \langle \mathbf{x} \rangle =_{\langle \mathbf{A} \rangle} \langle \mathbf{y} \rangle$
universal property $ A $	universal property / 4
$ A \rightarrow B$	$\langle\!\!\langle A \rangle\!\!\rangle \to B$
$A \rightarrow B$	$\overline{\Sigma(f:A \to B)}$, wconst (f)
if B is propositional	for any B
note: wconst $(f) \coloneqq \prod_{x,y:A} fa = fb$	
"non-recursive"	

Topic: Do we need recursive higher constructors?

Idea for constructing the propositional truncation as non-recursive HIT:

- \star start with a type A
- * apply $\langle\!\!\langle \rangle\!\!\rangle \implies$ type is ("conditionally") 0-connected
- * apply $\langle\!\!\langle \rangle\!\!\rangle_0 \implies 1$ -connected
- * apply $\langle\!\!\langle \rangle\!\!\rangle_1 \implies 2$ -connected
- \star in every step: "connectedness-level" increased

Finally: Take the homotopy colimit of

$$A \to \langle\!\langle A \rangle\!\rangle \to \langle\!\langle \langle\!\langle A \rangle\!\rangle\rangle_0 \to \langle\!\langle \langle\!\langle \langle A \rangle\!\rangle\rangle_0 \rangle\!\rangle_1 \to \langle\!\langle \langle\!\langle \langle \langle A \rangle\!\rangle\rangle_0 \rangle\!\rangle_1 \rangle\!\rangle_2 \to \dots \dots$$

All used HITs are non-recursive!

How NOT to prove this

Hard part: the colimit is propositional. Idea:

n-th homotopy group is trivial from step (n + 2) onwards

⇒ For the colimit: all homotopy groups are trivial
⇒ The colimit must be proositional.

Wrong because: Whitehead's theorem does not hold

But: some nice consequences, e.g. generalizes *Functions out of higher truncations* [Capriotti, K, Vezzosi, CSL'15] How to actually prove it

Lemma 1

Given a chain $A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \dots$ If every f_i is weakly constant, then the homotopy colimit A_{ω} is propositional.

This explains/generalizes [van Doorn, CPP'16]

Lemma 2

Every function in the sequence

$$A \to \langle\!\!\langle A \rangle\!\!\rangle \to \langle\!\!\langle \langle\!\langle A \rangle\!\!\rangle \rangle_0 \to \langle\!\!\langle \langle\!\langle \langle A \rangle\!\!\rangle \rangle_0 \rangle\!\!\rangle_1 \to \langle\!\!\langle \langle\!\langle \langle \langle \langle A \rangle\!\!\rangle \rangle_0 \rangle\!\!\rangle_1 \rangle\!\!\rangle_2 \to \dots$$

is weakly constant.

Summary

- ★ Have operator ||−|| as non-recursive HIT (with side results)
- * Higher truncation by simply omitting the first steps (?)
- * There are other constructions (van Doorn, Rijke)
- * Obvious question: Which classes of higher inductive types can be constructed non-recursively?

Conjecture: "all" apart from inductive-inductive ones.

Many thanks!