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Open HoTT problems
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complete
semi-Segal,
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teaser:
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SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :U
A1 :A0 × A0 → U
A2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

j
k

Example:
A0 ≡ {x, y, z, w}
A1(x, y) ≡ {f, g}
A1(x,w) ≡ {h},
. . .
A2(.., g, j, h) ≡ {δ}

PROBLEM: Find F : N→ U1
such that F(n) '
type of tuples (A0, . . . ,An).
UNSOLVED in “book-HoTT”,
solved in Voevodsky’s HTS,
our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows the
above encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s in
HoTT (internally)
WHY: occur everywhere in
HoTT, e.g. “HIT H is initial
in the category of H-algebras”
(not captured by AKS)
NOTE: “Semisimplicial types” ≈
functors ∆op

+ → U
(“simpl. types” ≈ ∆op → U ,
others see K.-Sattler’17).
APPROACH (if given SST):
mimic Rezk’s Segal spaces (re-
place space by type);
issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:
• semisimpl. type (A0, A1, . . .)
• Segal cond. (aka horn filling)
• completeness (Harpaz’15)
(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x x
ee

x x
id

ee

Special case:

• A1 family of sets
(⇒ only need A0, . . . , A3)
' AKS categories

(also works one level higher).
Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): Does
HoTT with (n+1) universes
model HoTT with n universes?

Can we implement HoTT in
HoTT?

Some partial results, e.g.
Altenkirch-Kaposi’s type the-
ory in type theory, Escardó,
Xu, Buchholtz, Lumsdaine,
Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set
• set-truncate ⇒ HoTT

not a model
• idea: use ∞-cat’s to add

all coherences (cf. Al-
tenkirch)

TT-IN-TT ⇒ SST: generate SST
terms, reflect them into the
host type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B
(for untruncated B)?

E.g. if B is set:
(‖A‖−1 → B)

' Σ(f : A→ B),
Π(x, y : A), fx = fy

We have constructions of trun-
cations (v Doorn, Rijke, K.)
which give elimination princi-
ples into arbitrary types –
but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,
i.e. η(X) is the ∞-
groupoid of X (RF re-
placement of X).
• Write coskeln :∞CAT→
∞CAT for the [n]-
coskeleton (removes cells
above dimension n)

CONJECTURE: (‖A‖n → B)
' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:
is it a set?
• Suspension of a set:

is it a 1-type?
• Adding a path to a 1-

type: what can we say?

What do these have to do with
the other questions?

https://arxiv.org/abs/1705.03307
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A0 :U
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A2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U
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Example:
A0 ≡ {x, y, z, w}
A1(x, y) ≡ {f, g}
A1(x,w) ≡ {h},
. . .
A2(.., g, j, h) ≡ {δ}

PROBLEM: Find F : N→ U1
such that F(n) '
type of tuples (A0, . . . ,An).
UNSOLVED in “book-HoTT”,
solved in Voevodsky’s HTS,
our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows the
above encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s in
HoTT (internally)
WHY: occur everywhere in
HoTT, e.g. “HIT H is initial
in the category of H-algebras”
(not captured by AKS)
NOTE: “Semisimplicial types” ≈
functors ∆op

+ → U
(“simpl. types” ≈ ∆op → U ,
others see K.-Sattler’17).
APPROACH (if given SST):
mimic Rezk’s Segal spaces (re-
place space by type);
issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:
• semisimpl. type (A0, A1, . . .)
• Segal cond. (aka horn filling)
• completeness (Harpaz’15)
(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x x
ee

x x
id

ee

Special case:

• A1 family of sets
(⇒ only need A0, . . . , A3)
' AKS categories

(also works one level higher).
Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): Does
HoTT with (n+1) universes
model HoTT with n universes?

Can we implement HoTT in
HoTT?

Some partial results, e.g.
Altenkirch-Kaposi’s type the-
ory in type theory, Escardó,
Xu, Buchholtz, Lumsdaine,
Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set
• set-truncate ⇒ HoTT

not a model
• idea: use ∞-cat’s to add

all coherences (cf. Al-
tenkirch)

TT-IN-TT ⇒ SST: generate SST
terms, reflect them into the
host type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B
(for untruncated B)?

E.g. if B is set:
(‖A‖−1 → B)

' Σ(f : A→ B),
Π(x, y : A), fx = fy

We have constructions of trun-
cations (v Doorn, Rijke, K.)
which give elimination princi-
ples into arbitrary types –
but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,
i.e. η(X) is the ∞-
groupoid of X (RF re-
placement of X).
• Write coskeln :∞CAT→
∞CAT for the [n]-
coskeleton (removes cells
above dimension n)

CONJECTURE: (‖A‖n → B)
' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:
is it a set?
• Suspension of a set:

is it a 1-type?
• Adding a path to a 1-

type: what can we say?

What do these have to do with
the other questions?

https://arxiv.org/abs/1705.03307
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• Segal cond. (aka horn filling)
• completeness (Harpaz’15)
(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x x
ee

x x
id

ee

Special case:

• A1 family of sets
(⇒ only need A0, . . . , A3)
' AKS categories

(also works one level higher).
Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): Does
HoTT with (n+1) universes
model HoTT with n universes?

Can we implement HoTT in
HoTT?

Some partial results, e.g.
Altenkirch-Kaposi’s type the-
ory in type theory, Escardó,
Xu, Buchholtz, Lumsdaine,
Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set
• set-truncate ⇒ HoTT

not a model
• idea: use ∞-cat’s to add

all coherences (cf. Al-
tenkirch)

TT-IN-TT ⇒ SST: generate SST
terms, reflect them into the
host type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B
(for untruncated B)?

E.g. if B is set:
(‖A‖−1 → B)

' Σ(f : A→ B),
Π(x, y : A), fx = fy

We have constructions of trun-
cations (v Doorn, Rijke, K.)
which give elimination princi-
ples into arbitrary types –
but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,
i.e. η(X) is the ∞-
groupoid of X (RF re-
placement of X).
• Write coskeln :∞CAT→
∞CAT for the [n]-
coskeleton (removes cells
above dimension n)

CONJECTURE: (‖A‖n → B)
' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:
is it a set?
• Suspension of a set:

is it a 1-type?
• Adding a path to a 1-

type: what can we say?

What do these have to do with
the other questions?

https://arxiv.org/abs/1705.03307


“Elementary” Problems
Wedge of A-many circles:

A 1 WA

Or, as HIT:

data WA

base : WA

loops : A→ base = base

Free group FG(A) is Ω(WA).
If A is a set⇒ is FG(A) a set?

Slightly more general:

A 1

1 ΣA

If A is a set, is ΣA a 1-type?



“Elementary” Problems
Wedge of A-many circles:

A 1 WA

Or, as HIT:

data WA

base : WA

loops : A→ base = base

Free group FG(A) is Ω(WA).
If A is a set⇒ is FG(A) a set?

Slightly more general:

A 1

1 ΣA

If A is a set, is ΣA a 1-type?



“Elementary” Problems (cont.)
Adding a path:

2 1

B B

If B is a 1-type, is the pushout
B still a 1-type?

Generalization of the above:

A C

B D

If A is a set and B,C are 1-
types, is D a 1-type?

Notes: (1) Yes, if LEM; (2) Probably no, if we try to
generalize further (thanks to P. Capriotti for the left example):

2 1

∥∥S2
∥∥
2

+
∥∥S2

∥∥
2

∥∥S2
∥∥
2
∨
∥∥S2

∥∥
2

S1 1

1 S2
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The Difficulty

How to characterize path spaces in
A C

B D

?

If A is a set and B,C are 1-types, we want path spaces in D
to be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampen
theorem characterizes path spaces as lists.
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(. . . so this does not answer the question.)



The Difficulty

How to characterize path spaces in
A C

B D

?

If A is a set and B,C are 1-types, we want path spaces in D
to be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampen
theorem characterizes the set-truncation of path spaces as
set-quotients of lists.

(. . . so this does not answer the question.)

The problem:

Forming “coherent quotients” without truncating is hard.



Quotienting by directed relations
What I need from a directed relation:

• a set W : U , together with a function deg : W → N;
• a family ;: W ×W → U ;
• such that (w ; v)→ deg(w) > deg(v).
• for (w, v, u : W ) such that w ; v and w ; u, we get
t : W together with v ;rt t and u ;rt t.

Here, ;rt is the refl-trans closure of ;, as in:

data ;rt: W → W → U
nil : {w : W} → (w ;rt w)

cons : {w, v, u : W} → (w ;rt v)

→ (v ; u)→ (w ;rt u)

Idea: We want (W/ ;).
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General case – undirected relation
Consider any set X with ∼: X → X → U .
Write (X/ ∼) for the set-quotient, with [−] : X → (X/ ∼).

Fact: For any x, y : X, the canonical map

Φ : (x ∼rst y)→ ([x] = [y]) (1)

is surjective.

Consequence: If Y is a 1-type, then the type

(X/ ∼)→ Y (2)

is equivalent to the type of triples (f, p, q) where

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

(3)
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General case – undirected relation

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

“Polygon” in X:

•
•

•

•

•
•

•

•

∼
∼

∼

∼

∼
∼

∼

∼

f : maps points to points in Y
p: maps lines to equalities in Y
q: polygon in Y is trivial
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What do we gain from a directed relation?

“Polygon” in W , ; directed,
vertices are the degrees:
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What do we gain from a directed relation?

“Polygon” in W , ; directed,
vertices are the degrees:

4

3

2

7

6

4

9

1

;
;

;

;

;
;

;

;

1

5 2



What do we gain from a directed relation (cont)?

Lexicographical order on ordered lists on N is well-founded

⇒ this process necessarily terminates with the trivial polygon

⇒ every “polygon” can be disassembled into “confluence
polygons”

⇒ in
f : X → Y

p : Π(a, b : X), (a ; b)→ f(a) = f(b)

q : Π(a : X), (l : a ;rst a), p∗(a, l) = refl

it is enough if q quantifies over those shapes given from the
confluence condition!

q : confluence shapes
p7→ commuting polygons



What do we gain from a directed relation (cont)?

This gives a fairly easy way to construct functions

(W/ ;)→ Y

if Y is a 1-type!

Back to the SvK theorem:

A (set) C (1-type)

B (1-type) D (???)

SvK theorem (Fav.-Shulm.): (lists/ ;) ' ‖eq-types in D‖0
Now we can get: (lists/ ;)→ ‖eq-types in D‖1
(which is the hard part of “2nd hom-groups of D are trivial”).
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What do we gain from a directed relation (cont)?

This gives a fairly easy way to construct functions

(W/ ;)→ Y

if Y is a 1-type!
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How to generalize?

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : confluence shapes
p7→ commuting polygons

Next step (Y is a 2-type): q maps the boundary of any
polyhedron whose sides are confluence shapes to a trivial
polyhedron in Y ?
Seems difficult. . .

Idea: In many examples (including the SvK-example), we
have strong confluence (reflexive instead of refl-trans closure).

⇒ Only need to consider cubes!
Seems much more doable (even in arbitrary dimensions?)

Thank you for your attention!
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