Some connections between open problems

Nicolai Kraus University of Nottingham

HoTTEST, 25 Oct 2018

Define semisimplicial types

### Define semisimplicial types

#### SEMISIMPLICIAL TYPES

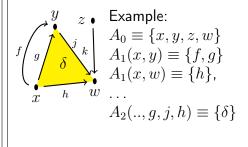
(UF 2012/13, Lumsdaine et al.)

$$A_0 : \mathcal{U}$$

$$A_1 : A_0 \times A_0 \to \mathcal{U}$$

$$A_2 : \Pi(x, y, z : A_0), A_1(x, y)$$

$$\times A_1(y, z) \times A_1(x, z) \to \mathcal{U}$$



### Define semisimplicial types

#### SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

 $\begin{aligned} A_0 &: \mathcal{U} \\ A_1 &: A_0 \times A_0 \to \mathcal{U} \\ A_2 &: \Pi(x, y, z : A_0), A_1(x, y) \\ &\times A_1(y, z) \times A_1(x, z) \to \mathcal{U} \end{aligned}$ 

### Define semisimplicial types

#### SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

 $\begin{array}{l} A_0: \mathcal{U} \\ A_1: A_0 \times A_0 \to \mathcal{U} \\ A_2: \Pi(x,y,z:A_0), A_1(x,y) \\ \times A_1(y,z) \times A_1(x,z) \to \mathcal{U} \end{array}$  **PROBLEM:** Find  $\mathbf{F}: \mathbb{N} \to \mathcal{U}_1$ such that  $\mathbf{F}(\mathbf{n}) \simeq$ type of tuples  $(\mathbf{A_0}, \ldots, \mathbf{A_n}).$ 

### Define semisimplicial types

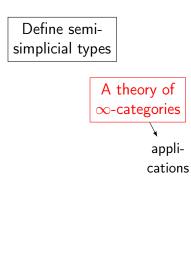
#### SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

 $A_0:\mathcal{U}$  $A_1: A_0 \times A_0 \to \mathcal{U}$  $A_2: \Pi(x, y, z: A_0), A_1(x, y)$  $\times A_1(y,z) \times A_1(x,z) \to \mathcal{U}$ **PROBLEM:** Find  $\mathbf{F}: \mathbb{N} \to \mathcal{U}_1$ such that  $\mathbf{F}(\mathbf{n}) \simeq$ type of tuples  $(A_0, \ldots, A_n)$ . UNSOLVED in "book-HoTT". solved in Voevodsky's HTS, our 2LTT (arXiv:1705.03307) NOTE: *semi* is what allows the above encoding.

### Define semisimplicial types

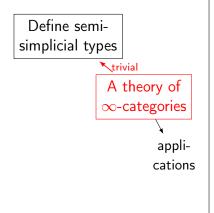
A theory of  $\infty$ -categories



#### HIGHER CATEGORIES

TASK: develop  $(\infty, 1)$ -cat's in HoTT (internally)

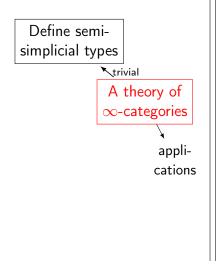
**WHY:** occur everywhere in HoTT, e.g. "HIT H is initial in the category of H-algebras" (not captured by AKS)



#### **HIGHER CATEGORIES**

TASK: develop  $(\infty, 1)$ -cat's in HoTT (internally)

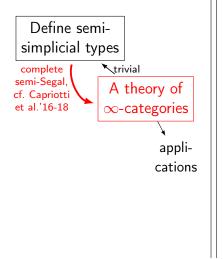
WHY: occur everywhere in HoTT, e.g. "HIT H is initial in the category of H-algebras" (not captured by AKS) NOTE: "Semisimplicial types"  $\approx$ functors  $\Delta^{op}_{+} \rightarrow \mathcal{U}$ ("simpl. types"  $\approx \Delta^{op} \rightarrow \mathcal{U}$ , others see K.-Sattler'17).



#### **HIGHER CATEGORIES**

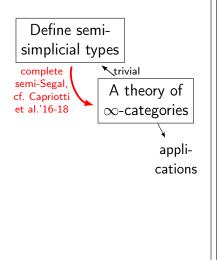
TASK: develop  $(\infty, 1)$ -cat's in HoTT (internally)

WHY: occur everywhere in HoTT, e.g. "HIT H is initial in the category of H-algebras" (not captured by AKS) NOTE: "Semisimplicial types"  $\approx$ functors  $\Delta^{\mathsf{op}}_{\perp} \to \mathcal{U}$ ("simpl. types"  $\approx \Delta^{op} \rightarrow \mathcal{U}$ , others see K.-Sattler'17). **APPROACH** (if given SST): mimic Rezk's Segal spaces (replace *space* by *type*); issue: *semi* 



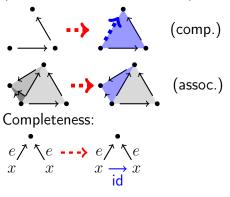
### COMPLETE SEMI-SEGAL TYPE Def:

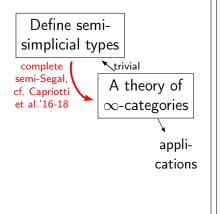
- semisimpl. type  $(A_0, A_1, \ldots)$
- Segal cond. (aka horn filling)
- completeness (Harpaz'15) (note: Segal, compl. are prop)



### COMPLETE SEMI-SEGAL TYPE Def:

- semisimpl. type  $(A_0, A_1, \ldots)$
- Segal cond. (aka horn filling)
- completeness (Harpaz'15) (note: Segal, compl. are prop)





### COMPLETE SEMI-SEGAL TYPE Def:

- semisimpl. type  $(A_0, A_1, \ldots)$
- Segal cond. (aka horn filling)
- completeness (Harpaz'15) (note: Segal, compl. are prop)

```
Special case:

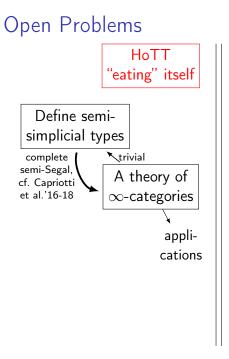
• A_1 family of sets

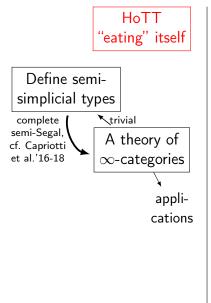
(\Rightarrow only need A_0, \ldots, A_3)

\simeq AKS categories

(also works one level higher).
```

Capriotti-K.'18

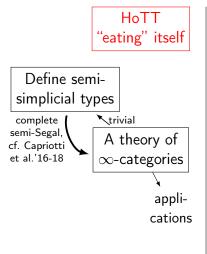




#### TYPE THEORY IN TYPE THEORY

**QUESTION** (SHULMAN'14): Does HoTT with (n+1) universes model HoTT with n universes?

Can we implement HoTT in HoTT?

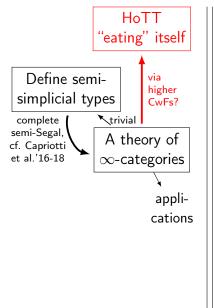


#### TYPE THEORY IN TYPE THEORY

**QUESTION** (SHULMAN'14): Does HoTT with (n+1) universes model HoTT with n universes?

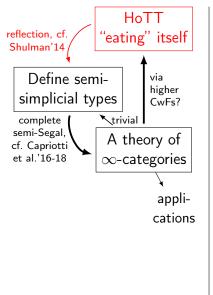
Can we implement HoTT in HoTT?

Some partial results, e.g. Altenkirch-Kaposi's *type theory in type theory*, Escardó, Xu, Buchholtz, Lumsdaine, Weaver, Tsementzis, ...



#### PROBLEM:

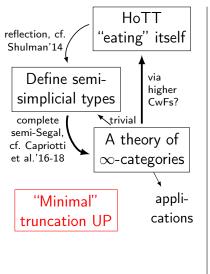
- syntax should be a set
- set-truncate  $\Rightarrow$  HoTT not a model
- idea: use ∞-cat's to add all coherences (cf. Altenkirch)

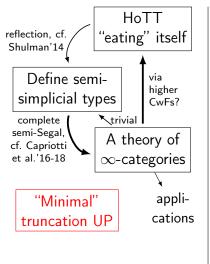


#### PROBLEM:

- syntax should be a set
- set-truncate  $\Rightarrow$  HoTT not a model
- idea: use ∞-cat's to add all coherences (cf. Altenkirch)

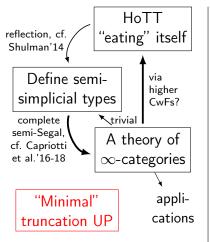
**TT-IN-TT**  $\Rightarrow$  **SST**: generate SST terms, reflect them into the host type theory.





#### ELIMINATING TRUNCATIONS

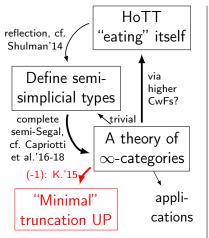
What is  $||A||_n \to B$ (for untruncated B)? E.g. if B is set:  $(||A||_{-1} \to B)$  $\simeq \Sigma(f : A \to B),$  $\Pi(x, y : A), fx = fy$ 



#### ELIMINATING TRUNCATIONS

What is  $||A||_n \to B$ (for untruncated B)? E.g. if B is set:  $(||A||_{-1} \to B)$  $\simeq \Sigma(f : A \to B),$  $\Pi(x, y : A), fx = fy$ 

We have constructions of truncations (v Doorn, Rijke, K.) which give elimination principles into arbitrary types – but difficult to apply!

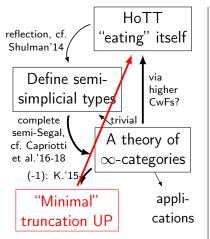


### USING HIGHER CAT'S

- Write  $\eta : \mathcal{U} \to \infty$ CAT, i.e.  $\eta(X)$  is the  $\infty$ groupoid of X (RF replacement of X).
- Write  $coskel_n : \infty CAT \rightarrow \infty CAT$  for the [n]coskeleton (removes cells above dimension n)

 $\begin{array}{ll} \text{CONJECTURE:} & (\|A\|_n \to B) \\ \simeq & (\operatorname{coskel}_{n+1}(\eta A) \to \eta B) \end{array}$ 

### **RESULT:** Works for $n \equiv -1$ (K.'15)

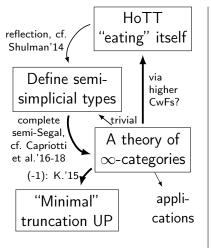


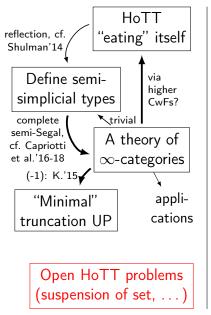
#### USING HIGHER CAT'S

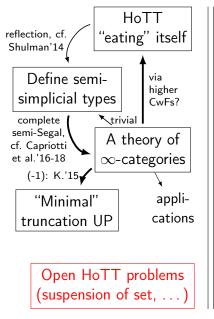
- Write  $\eta : \mathcal{U} \to \infty$ CAT, i.e.  $\eta(X)$  is the  $\infty$ groupoid of X (RF replacement of X).
- Write  $coskel_n : \infty CAT \rightarrow \infty CAT$  for the [n]coskeleton (removes cells above dimension n)

 $\begin{array}{ll} \text{CONJECTURE:} & (\|A\|_n \to B) \\ \simeq & (\operatorname{coskel}_{n+1}(\eta A) \to \eta B) \end{array}$ 

### **RESULT:** Works for $n \equiv -1$ (K.'15)



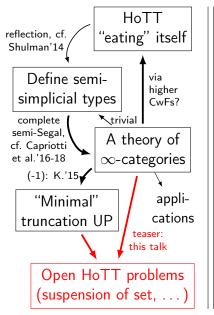




#### **ELEMENTARY OPEN PROBLEMS**

- Free ∞-group over a set: is it a set?
- Suspension of a set: is it a 1-type?
- Adding a path to a 1type: what can we say?

What do these have to do with the other questions?



#### **ELEMENTARY OPEN PROBLEMS**

- Free ∞-group over a set: is it a set?
- Suspension of a set: is it a 1-type?
- Adding a path to a 1type: what can we say?

What do these have to do with the other questions?

"Elementary" Problems Wedge of A-many circles:  $A \Longrightarrow 1 \dashrightarrow WA$ Or. as HIT: data WAbase : WA $loops: A \rightarrow base = base$ Free group FG(A) is  $\Omega(WA)$ . If A is a set  $\Rightarrow$  is FG(A) a set? "Elementary" Problems Wedge of A-many circles: Slightly more general:  $A \Longrightarrow 1 \dashrightarrow WA$ Or. as HIT: data WAbase : WAIf A is a set, is  $\Sigma A$  a 1-type?  $loops: A \rightarrow base = base$ Free group FG(A) is  $\Omega(WA)$ . If A is a set  $\Rightarrow$  is FG(A) a set?

 $\rightarrow \rightarrow \Sigma A$ 

### "Elementary" Problems (cont.)

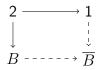
Adding a path:

$$\begin{array}{c} 2 \longrightarrow 1 \\ \downarrow \\ B \xrightarrow{\vdots} \\ B \xrightarrow{\vdots} \\ B \end{array}$$

If B is a 1-type, is the pushout  $\overline{B}$  still a 1-type?

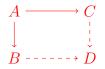
### "Elementary" Problems (cont.)

Adding a path:



If B is a 1-type, is the pushout  $\overline{B}$  still a 1-type?

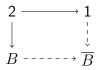
Generalization of the above:



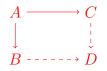
If A is a set and B, C are 1-types, is D a 1-type?

### "Elementary" Problems (cont.)

Adding a path:



Generalization of the above:

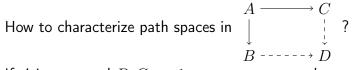


If B is a 1-type, is the pushout  $\overline{B}$  still a 1-type?

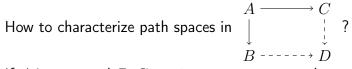
If A is a set and B, C are 1-types, is D a 1-type?

Notes: (1) Yes, if LEM; (2) Probably no, if we try to generalize further (thanks to P. Capriotti for the left example):

$$\begin{array}{cccc} 2 & & & \\ \downarrow & & & \downarrow \\ \left\| \mathbb{S}^{2} \right\|_{2} + \left\| \mathbb{S}^{2} \right\|_{2} & & & \\ \mathbb{S}^{2} \right\|_{2} \vee \left\| \mathbb{S}^{2} \right\|_{2} & & \\ 1 & & & \\ \end{array} \xrightarrow{1}_{2} & & \\ \mathbb{S}^{2} \\ 1 & & \\ \mathbb{S}^{2} \\ \mathbb{S}^{2$$

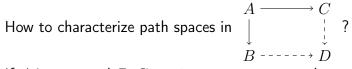


If A is a set and B,C are 1-types, we want path spaces in D to be sets.



If A is a set and B, C are 1-types, we want path spaces in D to be sets.

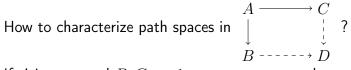
Favonia-Shulman's HoTT version of the *Seifert-van Kampen theorem* characterizes path spaces as lists.



If A is a set and B,C are 1-types, we want path spaces in D to be sets.

Favonia-Shulman's HoTT version of the *Seifert-van Kampen theorem* characterizes **the set-truncation of** path spaces as **set-quotients of** lists.

 $(\dots$  so this does not answer the question.)



If A is a set and B,C are 1-types, we want path spaces in D to be sets.

Favonia-Shulman's HoTT version of the *Seifert-van Kampen theorem* characterizes **the set-truncation of** path spaces as **set-quotients of** lists.

(... so this does not answer the question.)

The problem:

Forming "coherent quotients" without truncating is hard.

### Quotienting by directed relations

What I need from a directed relation:

- a set  $W : \mathcal{U}$ , together with a function  $deg : W \to \mathbb{N}$ ;
- a family  $\rightsquigarrow: W \times W \to \mathcal{U};$
- $\bullet \ \text{such that} \ (w \leadsto v) \to \deg(w) > \deg(v).$
- for (w, v, u : W) such that  $w \rightsquigarrow v$  and  $w \rightsquigarrow u$ , we get t : W together with  $v \rightsquigarrow^{rt} t$  and  $u \rightsquigarrow^{rt} t$ .

Here,  $\rightsquigarrow^{rt}$  is the refl-trans closure of  $\rightsquigarrow$ , as in:

data 
$$\sim^{rt}: W \to W \to \mathcal{U}$$
  
nil :  $\{w: W\} \to (w \sim^{rt} w)$   
cons :  $\{w, v, u: W\} \to (w \sim^{rt} v)$   
 $\to (v \sim u) \to (w \sim^{rt} u)$ 

### Quotienting by directed relations

What I need from a directed relation:

- a set  $W : \mathcal{U}$ , together with a function  $deg : W \to \mathbb{N}$ ;
- a family  $\rightsquigarrow: W \times W \to \mathcal{U}$ ;
- $\bullet \ \text{such that} \ (w \leadsto v) \to \deg(w) > \deg(v).$
- for (w, v, u : W) such that  $w \rightsquigarrow v$  and  $w \rightsquigarrow u$ , we get t : W together with  $v \rightsquigarrow^{rt} t$  and  $u \rightsquigarrow^{rt} t$ .

Idea: We want  $(W/ \rightsquigarrow)$ .

Here,  $\leadsto^{rt}$  is the refl-trans closure of  $\rightsquigarrow$ , as in:

data 
$$\sim^{rt}: W \to W \to \mathcal{U}$$
  
nil :  $\{w: W\} \to (w \sim^{rt} w)$   
cons :  $\{w, v, u: W\} \to (w \sim^{rt} v)$   
 $\to (v \sim u) \to (w \sim^{rt} u)$ 

Consider any set X with  $\sim: X \to X \to \mathcal{U}$ . Write  $(X/\sim)$  for the set-quotient, with  $[-]: X \to (X/\sim)$ .

Consider any set X with  $\sim: X \to X \to \mathcal{U}$ . Write  $(X/\sim)$  for the set-quotient, with  $[-]: X \to (X/\sim)$ . Fact: For any x, y: X, the canonical map

$$\Phi: (x \sim^{rst} y) \to ([x] = [y]) \tag{1}$$

is surjective.

Consider any set X with  $\sim: X \to X \to \mathcal{U}$ . Write  $(X/\sim)$  for the set-quotient, with  $[-]: X \to (X/\sim)$ . Fact: For any x, y: X, the canonical map

$$\Phi: (x \sim^{rst} y) \to ([x] = [y]) \tag{1}$$

is surjective.

Consequence: If Y is a 1-type, then the type

$$(X/\sim) \to Y \tag{2}$$

is equivalent to the type of triples  $\left(f,p,q\right)$  where

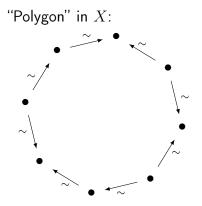
$$f: X \to Y$$
  

$$p: \Pi(a, b: X), (a \sim b) \to f(a) = f(b)$$
  

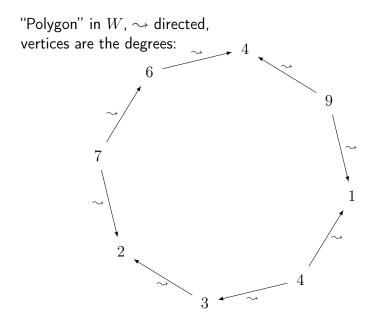
$$q: \Pi(a: X), (l: a \sim^{rst} a), p^*(a, l) = \text{refl}$$
(3)

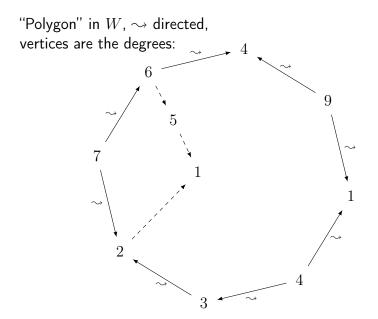
$$\begin{split} &f:X\to Y\\ &p:\Pi(a,b:X), (a\sim b)\to f(a)=f(b)\\ &q:\Pi(a:X), (l:a\sim^{rst}a), p^*(a,l)=\mathsf{refl} \end{split}$$

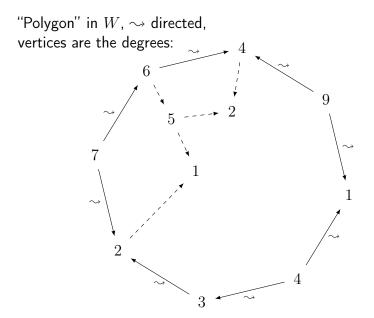
$$\begin{split} f &: X \to Y \\ p &: \Pi(a, b : X), (a \sim b) \to f(a) = f(b) \\ q &: \Pi(a : X), (l : a \sim^{rst} a), p^*(a, l) = \mathsf{refl} \end{split}$$



f: maps points to points in Yp: maps lines to equalities in Yq: polygon in Y is trivial







Lexicographical order on ordered lists on  $\ensuremath{\mathbb{N}}$  is well-founded

 $\Rightarrow$  this process necessarily terminates with the trivial polygon

 $\Rightarrow$  every "polygon" can be disassembled into "confluence polygons"

$$\begin{array}{l} \Rightarrow \text{ in} \\ f: X \to Y \\ p: \Pi(a,b:X), (a \leadsto b) \to f(a) = f(b) \\ q: \Pi(a:X), (l:a \leadsto^{rst} a), p^*(a,l) = \text{refl} \end{array}$$

it is enough if  $\boldsymbol{q}$  quantifies over those shapes given from the confluence condition!

$$q: \textit{confluence shapes} \stackrel{p}{\mapsto} \textit{commuting polygons}$$

This gives a fairly easy way to construct functions

$$(W/\! \leadsto) \to Y$$

if Y is a 1-type!

This gives a fairly easy way to construct functions

$$(W/\!\rightsquigarrow)\to Y$$

if Y is a 1-type!

Back to the SvK theorem:



This gives a fairly easy way to construct functions

 $(W/ \leadsto) \to Y$ 

if Y is a 1-type!

Back to the SvK theorem:

$$\begin{array}{c} A \text{ (set)} & \longrightarrow & C \text{ (1-type)} \\ \downarrow & & \downarrow \\ B \text{ (1-type)} & \longrightarrow & D \text{ (???)} \end{array}$$

SvK theorem (Fav.-Shulm.):  $(\text{lists}/ \rightsquigarrow) \simeq ||eq\text{-types in } D||_0$ Now we can get:  $(\text{lists}/ \rightsquigarrow) \rightarrow ||eq\text{-types in } D||_1$ (which is the hard part of "2<sup>nd</sup> hom-groups of D are trivial").

$$\begin{split} f &: X \to Y \\ p &: \Pi(a, b : X), (a \sim b) \to f(a) = f(b) \\ q &: \textit{confluence shapes} \xrightarrow{p} \textit{commuting polygons} \end{split}$$

$$\begin{split} f &: X \to Y \\ p &: \Pi(a, b : X), (a \sim b) \to f(a) = f(b) \\ q &: \textit{confluence shapes} \xrightarrow{p} \textit{commuting polygons} \end{split}$$

Next step (Y is a 2-type): q maps the boundary of any polyhedron whose sides are confluence shapes to a trivial polyhedron in Y? Seems difficult...

$$\begin{split} f &: X \to Y \\ p &: \Pi(a, b : X), (a \sim b) \to f(a) = f(b) \\ q &: \textit{confluence shapes} \xrightarrow{p} \textit{commuting polygons} \end{split}$$

Next step (Y is a 2-type): q maps the boundary of any polyhedron whose sides are confluence shapes to a trivial polyhedron in Y? Seems difficult...

**Idea:** In many examples (including the SvK-example), we have *strong* confluence (reflexive instead of refl-trans closure).

 $\Rightarrow$  Only need to consider cubes!

Seems much more doable (even in arbitrary dimensions?)

$$\begin{split} f &: X \to Y \\ p &: \Pi(a, b : X), (a \sim b) \to f(a) = f(b) \\ q &: \textit{confluence shapes} \xrightarrow{p} \textit{commuting polygons} \end{split}$$

Next step (Y is a 2-type): q maps the boundary of any polyhedron whose sides are confluence shapes to a trivial polyhedron in Y? Seems difficult...

**Idea:** In many examples (including the SvK-example), we have *strong* confluence (reflexive instead of refl-trans closure).

 $\Rightarrow$  Only need to consider cubes! Seems much more doable (even in arbitrary dimensions?)

#### Thank you for your attention!

## References

Mentioned or related papers and talks, roughly in order of occurrence. (Many papers have been published "formally", clickable arXiv links are for convenience.)

- Vladimir Voevodsky. *A type system with two kinds of identity types.* 2013.
- Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. *Two-level type theory and applications.* 2017. arXiv:1705.03307
- Paolo Capriotti. *Models of Type Theory with Strict Equality.* 2016. arXiv:1702.04912
- Emily Riehl and Michael Shulman. *A type theory for synthetic* ∞-*categories.* 2017. arXiv:1705.07442
- Benedikt Ahrens, Chris Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. 2015.arXiv:1303.0584
- Steve Awodey, Nicola Gambino, and Kristina Sojakova. *Homotopy-initial algebras in type theory.* 2017. arXiv:1504.05531

# References (cont.)

- Nicolai Kraus and Christian Sattler. *Space-valued diagrams, type-theoretically (extended abstract).* 2017. arXiv:1704.04543
- Yonatan Harpaz. *Quasi-unital* ∞-*Categories*. 2015. arXiv:1210.0212
- Charles Rezk. A model for the homotopy theory of homotopy theory. 2001. arXiv:math/9811037
- Paolo Capriotti and Nicolai Kraus. Univalent Higher Categories via Complete Semi-Segal Types. 2018. arXiv:1707.03693
- Michael Shulman. *Homotopy Type Theory should eat itself (but so far, it's too big to swallow).* 2014. Blog post.
- Thorsten Altenkirch. *Towards higher models and syntax of type theory.* HoTTEST talk, 10 May 2018.

# References (cont.)

- Ambrus Kaposi. *Type theory in a type theory with quotient inductive types.* PhD thesis, 2016.
- Thorsten Altenkirch and Ambrus Kaposi. *Type Theory in Type Theory Using Quotient Inductive Types.* 2016.
- Martín Hötzel Escardó and Chuangjie Xu. *Autophagia*. 2014. Agda file online.
- Nicolai Kraus. *The General Universal Property of the Propositional.* 2015. arXiv:1411.2682
- Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi. *Functions out of Higher Truncations.* 2015. arXiv:1507.01150
- Nicolai Kraus. *Truncation Levels in Homotopy Type Theory.* PhD thesis, 2015.
- Floris van Doorn. *Constructing the Propositional Truncation using Non-recursive HITs.* 2016. arXiv:1512.02274

# References (cont.)

- Nicolai Kraus. *Constructions with non-recursive truncations.* 2016.
- Egbert Rijke. *The join construction*. 2017. arXiv:1701.07538
- Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. *Higher Groups in Homotopy Type Theory.* 2018. arXiv:1802.04315
- Nicolai Kraus and Thorsten Altenkirch. *Free Higher Groups in Homotopy Type Theory.* 2018. arXiv:1805.02069
- Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen Theorem in Homotopy Type Theory. 2016.