Identities in higher categories (in dependent type theory)

Nicolai Kraus

CIRM, Logic and higher structures 21 February, 2022

General goal:

Develop a theory of $(\infty, 1)$ -categories in homotopy type theory.

Motivations:

- 1. These structures are already there (e.g. a universe \mathcal{U}).
- 2. Expected to be key to the question "Can HoTT eat itself?"
- 3. Useful for addressing other open problems, cf. Christian Sattler's talk ("Is the suspension of a set 1-truncated?")

Approach:

I use the simplicial approach (*Segal spaces*); cf. Eric Finster's talk for an opetopic definition.

Caveat:

We want a "semi-synthetic" (type = space) formulation of higher categories (not a set-based one).

PART 1

Why are higher-dimensional **semi-categories** easier to define than higher-dimensional **categories** in type theory?

(I.e.: What makes identities difficult?)

Structures can often be defined as presheaves over some category (plus properties).

Example: Directed graphs are presheaves on the category $\bullet \longrightarrow \bullet$

Definition of a graph in type theory:

$$V : \mathcal{U}$$

 $E : \mathcal{U}$
 $s : E \to V$
 $t : E \to V$

The two definitions are equivalent (as *records* or *nested* Σ *types*).

$$(V, E, s, t) \mapsto (V'E') \text{ with } V' \coloneqq V \text{ and } E'(a, b) \coloneqq \Sigma(v \colon V).(s(v) = a) \times (t(v) = b)$$
$$(V', E') \mapsto (V, E, s, t) \text{ with } V' \coloneqq V \text{ and } E'(a, b) \coloneqq \Sigma(v \colon V).(s(v) = a) \times (t(v) = b)$$

Continued example: Directed graphs as presheaves on the category •

$$V: \mathcal{U} \qquad V': \mathcal{U} \\ E: \mathcal{U} \qquad E': V' \times V' \to \mathcal{U} \\ s: E \to V \\ t: E \to V$$

"Tedious definition"

"Economical definition"

Caveat:

- \blacktriangleright $\mathcal U$ is a 1-category with categorical laws are given by judgmental equality.
- *U* is a higher category with higher cells given by the internal equality type. The first is meta-theoretic, the second is internal.
 ⇒ It's a good idea to be economical!

(n, 1)-categories as presheaves on Δ ?

$$[0] \longleftrightarrow [1] \overleftrightarrow{\longleftrightarrow} [2] \overleftrightarrow{\longleftrightarrow} [3] \cdots$$

$$A_0 : \mathcal{U}$$

$$A_1 : A_0 \to A_0 \to \mathcal{U}$$

$$A_2 : (x, y, z : A_0) \to A_1(x, y) \to A_1(y, z) \to A_1(x, z) \to \mathcal{U}$$

$$A_3 : (x, y, z, w : A_0) \to \dots$$

Example:

$$A_0 \equiv \{x, y, z, w\}$$

 $A_1(x, y) \equiv \{f, g\}$
 $A_1(x, w) \equiv \{h\}, \dots$
 $A_2(x, y, w, g, j, h) \equiv$ yellow Δ

(n,1)-categories as presheaves on Δ ?

$$[0] \longleftrightarrow [1] \overleftrightarrow{\longleftrightarrow} [2] \overleftrightarrow{\longleftrightarrow} [3] \cdots$$

$$A_0 : \mathcal{U}$$

$$A_1 : A_0 \to A_0 \to \mathcal{U}$$

$$A_2 : (x, y, z : A_0) \to A_1(x, y) \to A_1(y, z) \to A_1(x, z) \to \mathcal{U}$$

$$A_3 : (x, y, z, w : A_0) \to \dots$$

Note: The above represents the presheaf $\Delta_+^{\leq 2} \to \mathcal{U}$ given by

$$[0] \mapsto A_0$$

$$[1] \mapsto \Sigma(x, y : A_0), A_1(x, y)$$

$$[2] \mapsto \Sigma x, y, z, f, g, h, A_2(x, y, z, f, g, h)$$

$[0] \overleftrightarrow{[1]} \overleftrightarrow{[2]} \overleftrightarrow{[3]} \cdots$

The "Reedy fibrant representation" (diagrams via type families) only tells us how to define a type of presheaves on the direct part Δ_+ .

How to add the inverse/negative part Δ_- ?

Construction 1: A direct replacement construction

(Sattler's variation of Kock's fat Delta)

Idea: "Make Δ direct."

The dashed/marked/thin morphism $[0] \rightarrow [0']$ gets mapped to an equivalence, expressed by h. Note: This is a proposition!

Construction 1: A direct replacement construction

I now write (1, 1, 1) instead of [2], and so on. Def. of this category: Objects are non-empty lists of positive integers; morphisms from (a_0, \ldots, a_m) to (b_0, \ldots, b_n) are maps $f \in \Delta([m], [n])$ such that $b_j \ge$ the sum of all $f^{-1}[j]$. f is marked if it's an identity in Δ .

In general: For R a Reedy category, define the direct replacement D(R) as follows:

Objects are arrows in R_- . A morphism between $s: x \to y$ and $t: z \to w$ is a morphism $f \in R(y, w)$ such that there exists a morphism $x \to w$ in R_+ that makes the square commute.

Construction 2: Homotopy-coherent diagrams

. . .

Idea: "Make the tedious definition work." I.e.: Drop the idea that we want to represent presheaves via type families.

Important example of a "semi-simplicial type": presheaf $\mathbf{T}: \Delta_+ \to \mathcal{U}$,

$$\begin{array}{rcl} \mathbf{T}_0 & \cong & \mathcal{U} \\ \mathbf{T}_1(X,Y) & \cong & X \to Y \\ \mathbf{T}_2(X,Y,Z,f,g,h) & \cong & g \circ f = h \end{array}$$

(E.g. constructed as Reedy fibrant replacement of the semi-simplicial nerve of U. This is very roughly Shulman's universe with relations replaced by functions.)

. . .

Construction 2: Homotopy-coherent diagrams

For C a category, write N(C) for the nerve (chains of morphisms).

Define a homotopy coherent presheaf on C to be a "natural transformation" $N(\mathcal{C}^{op}) \rightarrow \mathbf{T}$; formally:

Definition: homotopy coherent diagram

The type of homotopy coherent presheaves is the Reedy limit of the composition $\left(\int N(\mathcal{C}^{\text{op}})\right) \xrightarrow{\text{shape}} \Delta_{+}^{\text{op}} \xrightarrow{\mathbf{T}} \text{Type.}$

Intuition of such a "natural transformation":

- level 0: For every object x of C, a type $A_x : U$;
- ▶ level 1: For every arrow $x \xrightarrow{f} y$ in C^{op} , a function $A_g : A_x \to A_y$;
- ▶ level 2: For every chain $x \xrightarrow{f} y \xrightarrow{g} z$ in $\mathcal{C}^{\mathsf{op}}$, an equality $A_g \circ A_f = A_{g \circ f}$;
- ▶ level 3: For every chain $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h}$ in C^{op} , a higher equality; ...

Construction 2: Homotopy-coherent diagrams

Result 1

The type of homotopy coherent presheaves on Δ and the type of Reedy fibrant presheaves on the Kock/Sattler "fat" Δ are equivalent (in a theory where they exist – still unknown for pure HoTT).

- 1. Presheaves on Δ defined
- 2. To do: add Segal condition
- 3. \Rightarrow Definition of $(\infty, 1)$ -categories

(Un)surprisingly, step 2 is completely unproblematic. Segal condition: The usual maps $A_n \rightarrow A_1 \times_{A_0} A_1 \times_{A_0} \ldots \times_{A_0} A_1$ are equivalences. Note: That's a proposition.

Construction 3: Idempotent equivalences

Start with a semi-simplicial type with Segal condition – an " $(\infty, 1)$ -semicategory".

The Segal condition gives a notion of composition:

$$_\circ_:A_1(y,z)\times A_1(x,y)\to A_1(x,z).$$

Define:

- $f: A_1(x, x)$ is *idempotent* if $f \circ f = f$ (i.e. if we have $A_2(f, f, f)$).
- ▶ f: A₁(x, y) is an equivalence if both (f ∘ _) and (_ ∘ f) are equivalences of types

Then, for any $x : A_0$, the type

```
\Sigma(i: A_1(x, x)).is-idempotent(i) \times is-equivalence(i)
```

is a proposition.

Construction 3: Idempotent equivalences

Thus, we can define:

Definition: $(\infty, 1)$ -category

A simple $(\infty, 1)$ -category is a semi-simplicial type satisfying the Segal condition and such that every object is equipped with an idempotent equivalence.

Result 2 (caveat: not properly written up yet)

This simple notion of ∞ -category is equivalent to both the definition via homotopy-coherent presheaves and the one via a direct replacement.

A weak version of the result

Result 2' (weak version of Result 2)

Let A be an $(\infty, 1)$ -semicategory.

If A has an idempotent equivalence, then we can construct all the degeneracy maps $s_i: A_n \to A_{n+1}$ such that the equalities

$$\begin{aligned} &d_i \circ s_j \equiv s_{j-1} \circ d_i & \text{if } i < j \\ &d_i \circ s_j \equiv s_j \circ d_{i-1} & \text{if } i > j+1 \\ &d_i \circ s_j \equiv \text{id} & \text{if } i = j \text{ or } i = j+ \end{aligned}$$

hold judgmentally.

Sketch of Result 2'

Let α be an *n*-simplex. We need to construct an (n + 1)-simplex $s_i(\alpha)$. We construct $s_i(\alpha)$ and $s_i(s_i(\alpha))$ simultaneously, by induction on n. Assume n = i = 2 for simplicity (it works in essentially the same way on all levels). and assume α is given by the chain $x \xrightarrow{f} y \xrightarrow{g} z$. Consider the partial 4-simplex with "spine" $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{i} z \xrightarrow{i} z$ and where all faces that we have by induction are filled in. One can then check manually that three faces at level 3 are missing and the single face on level 4 is missing. But the missing faces at level 3 have the same boundary, and the problem is equivalent to an "ordinary" horn-filling problem; as usual, this is a re-formulation of the Segal condition.