Identities in higher categories (in dependent type theory)

Nicolai Kraus

CIRM, Logic and higher structures 21 February, 2022

General goal:

Develop a theory of $(\infty, 1)$-categories in homotopy type theory.

Motivations:

1. These structures are already there (e.g. a universe \mathcal{U}).
2. Expected to be key to the question "Can HoTT eat itself?"
3. Useful for addressing other open problems, cf. Christian Sattler's talk ("Is the suspension of a set 1-truncated?")

Approach:

I use the simplicial approach (Segal spaces); cf. Eric Finster's talk for an opetopic definition.

Caveat:

We want a "semi-synthetic" (type = space) formulation of higher categories (not a set-based one).

PART 1

Why are higher-dimensional semi-categories easier to define than higher-dimensional categories in type theory?
(I.e.: What makes identities difficult?)

Structures can often be defined as presheaves over some category (plus properties).
Example: Directed graphs are presheaves on the category

Definition of a graph in type theory:

$$
\begin{aligned}
& V: \mathcal{U} \\
& E: \mathcal{U} \\
& s: E \rightarrow V \\
& t: E \rightarrow V
\end{aligned}
$$

$$
V^{\prime}: \mathcal{U}
$$

$$
E^{\prime}: V^{\prime} \times V^{\prime} \rightarrow \mathcal{U}
$$

The two definitions are equivalent (as records or

$$
\begin{array}{r}
(V, E, s, t) \mapsto\left(V^{\prime} E^{\prime}\right) \text { with } V^{\prime}: \equiv V \text { and } E^{\prime}(a, b): \equiv \\
\Sigma(v: V) \cdot(s(v)=a) \times(t(v)=b)
\end{array}
$$

$$
\begin{array}{r}
\left(V^{\prime}, E^{\prime}\right) \mapsto(V, E, s, t) \text { with } V^{\prime}: \equiv V \text { and } E^{\prime}(a, b): \equiv \\
\Sigma(v: V) \cdot(s(v)=a) \times(t(v)=b)
\end{array}
$$

Continued example: Directed graphs as presheaves on the category

$$
\begin{aligned}
& V: \mathcal{U} \\
& E: \mathcal{U} \\
& s: E \rightarrow V \\
& t: E \rightarrow V
\end{aligned}
$$

"Tedious definition"

$$
V^{\prime}: \mathcal{U}
$$

$$
E^{\prime}: V^{\prime} \times V^{\prime} \rightarrow \mathcal{U}
$$

"Economical definition"

Caveat:

- \mathcal{U} is a 1-category with categorical laws are given by judgmental equality.
- \mathcal{U} is a higher category with higher cells given by the internal equality type.

The first is meta-theoretic, the second is internal.
\Rightarrow It's a good idea to be economical!
$(n, 1)$-categories as presheaves on Δ ?

$$
\begin{aligned}
& A_{0}: \mathcal{U} \\
& A_{1}: A_{0} \rightarrow A_{0} \rightarrow \mathcal{U} \\
& A_{2}:\left(x, y, z: A_{0}\right) \rightarrow A_{1}(x, y) \rightarrow A_{1}(y, z) \rightarrow A_{1}(x, z) \rightarrow \mathcal{U} \\
& A_{3}:\left(x, y, z, w: A_{0}\right) \rightarrow \ldots
\end{aligned}
$$

Example:

$$
\begin{aligned}
& A_{0} \equiv\{x, y, z, w\} \\
& A_{1}(x, y) \equiv\{f, g\} \\
& A_{1}(x, w) \equiv\{h\}, \ldots \\
& A_{2}(x, y, w, g, j, h) \equiv \text { yellow } \Delta
\end{aligned}
$$

$(n, 1)$-categories as presheaves on Δ ?

$$
\begin{aligned}
& A_{0}: \mathcal{U} \\
& A_{1}: A_{0} \rightarrow A_{0} \rightarrow \mathcal{U} \\
& A_{2}:\left(x, y, z: A_{0}\right) \rightarrow A_{1}(x, y) \rightarrow A_{1}(y, z) \rightarrow A_{1}(x, z) \rightarrow \mathcal{U} \\
& A_{3}:\left(x, y, z, w: A_{0}\right) \rightarrow \ldots
\end{aligned}
$$

Note: The above represents the presheaf $\Delta_{+}^{\leq 2} \rightarrow \mathcal{U}$ given by

$$
\begin{aligned}
{[0] } & \mapsto A_{0} \\
{[1] } & \mapsto \Sigma\left(x, y: A_{0}\right), A_{1}(x, y) \\
{[2] } & \mapsto \Sigma x, y, z, f, g, h, A_{2}(x, y, z, f, g, h)
\end{aligned}
$$

PART 2

$[0] \rightleftarrows[1] \stackrel{\rightleftarrows}{\rightleftarrows}[2] \underset{\rightleftarrows}{\rightleftarrows}[3] \cdots$

The "Reedy fibrant representation" (diagrams via type families) only tells us how to define a type of presheaves on the direct part Δ_{+}.

How to add the inverse/negative part Δ_{-}?

Construction 1: A direct replacement construction

(Sattler's variation of Kock's fat Delta)
Idea: "Make Δ direct."

$$
\begin{aligned}
& A_{0}: \mathcal{U} \\
& A_{1}: A_{0} \rightarrow A_{0} \rightarrow \mathcal{U} \\
& A_{0^{\prime}}:\left(x: A_{0}\right) \rightarrow A_{1}(x, x) \rightarrow \mathcal{U} \\
& h:\left(x: A_{0}\right) \rightarrow \text { isContractible }\left(\Sigma\left(i: A_{1}(x, x)\right) \cdot A_{0^{\prime}} x i\right)
\end{aligned}
$$

The dashed/marked/thin morphism $[0] \rightarrow\left[0^{\prime}\right]$ gets mapped to an equivalence, expressed by h. Note: This is a proposition!

Construction 1: A direct replacement construction

$(1) \Longrightarrow(1,1) \Longrightarrow(1,1,1)$

$(1,2)$

I now write ($1,1,1$) instead of [2], and so on.
Def. of this category:
Objects are non-empty lists of positive integers; morphisms from $\left(a_{0}, \ldots, a_{m}\right)$ to (b_{0}, \ldots, b_{n}) are maps $f \in \Delta([m],[n])$ such that $b_{j} \geq$ the sum of all $f^{-1}[j]$.
f is marked if it's an identity in Δ.

In general: For R a Reedy category, define the direct replacement $D(R)$ as follows:
Objects are arrows in R_{-}. A morphism between $s: x \rightarrow y$ and $t: z \rightarrow w$ is a morphism $f \in R(y, w)$ such that there exists a morphism $x \rightarrow w$ in R_{+}that makes the square commute.

Construction 2: Homotopy-coherent diagrams

Idea: "Make the tedious definition work."
I.e.: Drop the idea that we want to represent presheaves via type families. Important example of a "semi-simplicial type": presheaf $\mathbf{T}: \Delta_{+} \rightarrow \mathcal{U}$,

\mathbf{T}_{0}	$\cong \mathcal{U}$
$\mathbf{T}_{1}(X, Y)$	$\cong X \rightarrow Y$
$\mathbf{T}_{2}(X, Y, Z, f, g, h)$	$\cong g \circ f=h$

(E.g. constructed as Reedy fibrant replacement of the semi-simplicial nerve of \mathcal{U}. This is very roughly Shulman's universe with relations replaced by functions.)

Construction 2: Homotopy-coherent diagrams

For \mathcal{C} a category, write $N(\mathcal{C})$ for the nerve (chains of morphisms).
Define a homotopy coherent presheaf on \mathcal{C} to be a "natural transformation" $N\left(\mathcal{C}^{\text {op }}\right) \rightarrow \mathbf{T}$; formally:

Definition: homotopy coherent diagram

The type of homotopy coherent presheaves is the Reedy limit of the composition $\left(\int N\left(\mathcal{C}^{\text {op }}\right)\right) \xrightarrow{\text { shape }} \Delta_{+}^{\text {op }} \xrightarrow{\mathrm{T}}$ Type.

Intuition of such a "natural transformation":

- level 0: For every object x of \mathcal{C}, a type $A_{x}: \mathcal{U}$;
- level 1: For every arrow $x \xrightarrow{f} y$ in $\mathcal{C}^{\text {op }}$, a function $A_{g}: A_{x} \rightarrow A_{y}$;
- level 2: For every chain $x \xrightarrow{f} y \xrightarrow{g} z$ in $\mathcal{C}^{\text {op }}$, an equality $A_{g} \circ A_{f}=A_{g \circ f}$;
- level 3: For every chain $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h}$ in $\mathcal{C}^{\text {op }}$, a higher equality; ...

Construction 2: Homotopy-coherent diagrams

Result 1

The type of homotopy coherent presheaves on Δ and the type of Reedy fibrant presheaves on the Kock/Sattler "fat" Δ are equivalent (in a theory where they exist - still unknown for pure HoTT).

1. Presheaves on Δ defined
2. To do: add Segal condition
3. \Rightarrow Definition of $(\infty, 1)$-categories
(Un)surprisingly, step 2 is completely unproblematic.
Segal condition: The usual maps $A_{n} \rightarrow A_{1} \times{ }_{A_{0}} A_{1} \times{ }_{A_{0}} \ldots \times_{A_{0}} A_{1}$ are equivalences.
Note: That's a proposition.

Construction 3: Idempotent equivalences

Start with a semi-simplicial type with Segal condition - an " $(\infty, 1)$-semicategory".
The Segal condition gives a notion of composition:

$$
^{\circ}{ }{-}: A_{1}(y, z) \times A_{1}(x, y) \rightarrow A_{1}(x, z) .
$$

Define:

- $f: A_{1}(x, x)$ is idempotent if $f \circ f=f$ (i.e. if we have $A_{2}(f, f, f)$).
- $f: A_{1}(x, y)$ is an equivalence if both $\left(f \circ{ }_{-}\right)$and $\left(_\circ f\right)$ are equivalences of types
Then, for any $x: A_{0}$, the type

$$
\Sigma\left(i: A_{1}(x, x)\right) \text {.is-idempotent }(i) \times \text { is-equivalence }(i)
$$

is a proposition.

Construction 3: Idempotent equivalences

Thus, we can define:

$$
\text { Definition: }(\infty, 1) \text {-category }
$$

A simple $(\infty, 1)$-category is a semi-simplicial type satisfying the Segal condition and such that every object is equipped with an idempotent equivalence.

Result 2 (caveat: not properly written up yet)

This simple notion of ∞-category is equivalent to both the definition via homotopycoherent presheaves and the one via a direct replacement.

A weak version of the result

Result 2' (weak version of Result 2)

Let A be an $(\infty, 1)$-semicategory.
If A has an idempotent equivalence, then we can construct all the degeneracy maps $s_{i}: A_{n} \rightarrow A_{n+1}$ such that the equalities

$$
\begin{array}{ll}
d_{i} \circ s_{j} \equiv s_{j-1} \circ d_{i} & \\
\text { if } i<j \\
d_{i} \circ s_{j} \equiv s_{j} \circ d_{i-1} & \\
d_{i} \circ s_{j} \equiv \text { if } i>j+1 \\
& \\
\text { if } i=j \text { or } i=j+1
\end{array}
$$

hold judgmentally.

Sketch of Result 2'

Let α be an n-simplex. We need to construct an $(n+1)$-simplex $s_{i}(\alpha)$. We construct $s_{i}(\alpha)$ and $s_{i}\left(s_{i}(\alpha)\right)$ simultaneously, by induction on n. Assume $n=i=2$ for simplicity (it works in essentially the same way on all levels), and assume α is given by the chain $x \xrightarrow{f} y \xrightarrow{g} z$. Consider the partial 4 -simplex with "spine" $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{i} z \xrightarrow{i} z$ and where all faces that we have by induction are filled in. One can then check manually that three faces at level 3 are missing and the single face on level 4 is missing. But the missing faces at level 3 have the same boundary, and the problem is equivalent to an "ordinary" horn-filling problem; as usual, this is a re-formulation of the Segal condition.

