# Decidability and Semidecidability via Ordinals 

Nicolai Kraus
jww Fredrik Nordvall Forsberg and Chuangjie Xu

TYPES 2022
Nantes, 23 June 2022

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \ldots \omega, \omega+1, \omega+2, \quad \ldots \omega \cdot 2+19, \ldots
$$

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \ldots \omega, \omega+1, \omega+2, \quad \ldots \omega \cdot 2+19, \ldots
$$



Alice
Builds \& sells houses


## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \omega \cdot 2+19, \ldots
$$

20 days, at most!
When is my house ready?


Alice
Builds \& sells houses

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$

When is my house ready?
20 days, at most!
next day: How long?


Alice
Builds \& sells houses


Bob
Wants to buy

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$

When is my house ready?
20 days, at most!
next day:
How long?


How long?
Alice
Builds \& sells houses

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$

When is my house ready?

$$
\omega+1 \text { days! }
$$



Alice
Builds \& sells houses

5
Bob
Wants to buy

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$

When is my house ready?

$$
\omega+1 \text { days! }
$$

next day:
How long?
next day:

Alice
Builds \& sells houses

How long?
7242 days
WHAT??

5 Bob Wants to buy

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$



Hydra by Kirby and Paris 1982, and pictures by PBS Infinite Series, https://youtu.be/uWwUpEY4c8o

## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$



[^0]
## What are ordinal numbers?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \quad \ldots \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \quad \omega \cdot 2+19, \ldots
$$



ATTACK

Hydra by Kirby and Paris 1982, and pictures by PBS Infinite Series, https://youtu.be/uWwUpEY4c8o

## Brouwer ordinal trees in constructive type theory

Inductive type $\mathcal{B}$ of Brouwer trees:
data $\mathcal{B}$ where

$$
\begin{aligned}
& \text { zero : } \mathcal{B} \\
& \text { succ : } \mathcal{B} \rightarrow \mathcal{B} \\
& \text { limit: }(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}
\end{aligned}
$$

Then: Define $\omega:=\operatorname{limit}(0,1,2,3, \ldots)$
$\omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)$
and so on (addition, multiplication, exponentiation are standard).

## Brouwer ordinal trees in constructive type theory

Inductive type $\mathcal{B}$ of Brouwer trees:
data $\mathcal{B}$ where

$$
\begin{aligned}
& \text { zero : } \mathcal{B} \\
& \text { succ }: \mathcal{B} \rightarrow \mathcal{B} \\
& \text { limit }:(\mathbb{N} \rightarrow \mathcal{B}) \rightarrow \mathcal{B}
\end{aligned}
$$

Then: Define $\omega:=\operatorname{limit}(0,1,2,3, \ldots)$
$\omega \cdot 2:=\operatorname{limit}(\omega, \omega+1, \omega+2, \ldots)$
and so on (addition, multiplication, exponentiation are standard).
One problem (for our application): $\quad \operatorname{limit}(0,1,2,3, \ldots) \neq \operatorname{limit}(1,2,3, \ldots)$
Our approach: induction-induction and path constructors, ensuring:

- Limits can only be taken of strictly increasing sequences;
- Bisimilar sequences have equal limits.


## In cubical Agda:

```
data Brw where
    zero : Brw
    succ : Brw \(\rightarrow\) Brw note: \(x<y\)
    limit : (f : \(\mathbb{N} \rightarrow\) Brw) \(\rightarrow\) \{f \(\uparrow\) : increasing f\} \(\rightarrow\) Brw
    bisim : \(\forall \mathrm{f}\{\mathrm{f} \uparrow\} \mathrm{g}\{\mathrm{g} \uparrow\} \rightarrow\)
        \(\mathrm{f} \approx \mathrm{g} \rightarrow\)
        limit \(\mathrm{f}\{\mathrm{f} \uparrow\} \equiv\) limit \(\mathrm{g}\{\mathrm{g} \uparrow\}\)
    trunc : isSet Brw
```

data s where
s-zēro $\quad: \forall\{x\} \rightarrow$ zero $\leq x$
$\leq$-trans : $\forall\{x y z\} \rightarrow x \leq y \rightarrow y \leq z \rightarrow x \leq z$
$\leq-$ succ-mono : $\forall\{x y\} \rightarrow x \leq y \rightarrow \operatorname{succ} x \leq \operatorname{succ} y$
$\leq$-cocone $: \forall\{x\} f(f \uparrow k\} \rightarrow(x \leq f k) \rightarrow(x \leq \operatorname{limit} f\{f \uparrow\})$
$\leq-l i m i t i n g: ~ \forall f(f \uparrow x\} \rightarrow((k: \mathbb{N}) \rightarrow f(k \leq x) \rightarrow$ limit $f\{f \uparrow\} \leq x$
s-trunc $: \forall\{x y\} \rightarrow$ isProp $(x \leq y)$

Everything that one can "reasonably expect" works: < is wellfounded, $\leq$ is antisymmetric, limits are actually limits, arithmetic operations work, and so on.

## Decidability properties

data $\mathcal{B}$ where

## zero: $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
succ: $\mathcal{B} \rightarrow \mathcal{B}$
limit : $(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

## Decidability properties

data $\mathcal{B}$ where
zero: $\mathcal{B}$
$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit $:(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

## Decidability properties

data $\mathcal{B}$ where

## zero : $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit $:(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.

## Decidability properties

data $\mathcal{B}$ where

## zero : $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit $:(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

## Decidability properties

data $\mathcal{B}$ where
$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...

## zero: $\mathcal{B}$

succ: $\mathcal{B} \rightarrow \mathcal{B}$
limit : $(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

Sure: No for zero and limits; for succ $y$, check whether $y=16$.

## Decidability properties

## data $\mathcal{B}$ where

## zero : $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit $:(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

Sure: No for zero and limits; for succ $y$, check whether $y=16$.
3. $x>42$ ?

## Decidability properties

## data $\mathcal{B}$ where

## zero: $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ: $\mathcal{B} \rightarrow \mathcal{B}$
limit : $(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

Sure: No for zero and limits; for succ $y$, check whether $y=16$.
3. $x>42$ ?

Sure: No for zero, yes for limits; for succ $y$, check whether $y>41$.

## Decidability properties

## data $\mathcal{B}$ where

## zero: $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ: $\mathcal{B} \rightarrow \mathcal{B}$
limit : $(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

Sure: No for zero and limits; for succ $y$, check whether $y=16$.
3. $x>42$ ?

Sure: No for zero, yes for limits; for succ $y$, check whether $y>41$.
4. $x>\omega$ ?

## Decidability properties

## data $\mathcal{B}$ where

## zero: $\mathcal{B}$

$P$ is decidable if we can prove $P \uplus \neg P$.
If $x$ is a Brouwer tree ordinal, is it decidable whether ...
succ : $\mathcal{B} \rightarrow \mathcal{B}$
limit $:(\mathbb{N} \xrightarrow{\text { incr }} \mathcal{B}) \rightarrow \mathcal{B}$

1. $x$ is finite?

Sure: zero is finite; succ $y$ is finite iff $y$ is; limits are never finite.
2. $x=17$ ?

Sure: No for zero and limits; for succ $y$, check whether $y=16$.
3. $x>42$ ?

Sure: No for zero, yes for limits; for succ $y$, check whether $y>41$.
4. $x>\omega$ ?

Can decide it for zero and succ, but: $\quad \operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega ?$

## When is $\operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega \quad ?$

- For any $i$, we can check whether $x_{i}$ is finite.
- As soon as we discover an infinite $x_{i}$, the question is decided positively.
- Only if all $x_{i}$ are finite, the answer is negative.
$\Rightarrow$ Semidecidable.


## When is $\operatorname{limit}\left(x_{0}, x_{1}, x_{2}, \ldots\right)>\omega \quad ?$

- For any $i$, we can check whether $x_{i}$ is finite.
- As soon as we discover an infinite $x_{i}$, the question is decided positively.
- Only if all $x_{i}$ are finite, the answer is negative.
$\Rightarrow$ Semidecidable.
Definition (Bauer 2006): $P$ is semidecidable if

$$
\exists(s: \mathbb{N} \rightarrow \text { Bool }) . P \leftrightarrow \exists k \cdot s_{k}=\text { true }
$$

$$
\text { (Note: } \exists(x: A) . B(x) \text { means }\|\Sigma(x: A) . B(x)\| \cdot)
$$

Fact: For any $x$, the question $x>\omega$ is semidecidable.

## The other direction

Given $s: \mathbb{N} \rightarrow$ Bool, we can construct an increasing sequence $f$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { is [minimal] such that } s_{n}=\text { true } \\
\operatorname{succ}(f n) & \text { else. }\end{cases}
\end{aligned}
$$

Then: (limit $f>\omega) \leftrightarrow\left(\exists k \cdot s_{k}=\right.$ true $)$.

## Semidecidability via ordinals

Via these translations: For any proposition $P$,
$\exists(y: \mathcal{B}) \cdot P \leftrightarrow(y>\omega) \quad \longleftrightarrow \quad \exists(s: \mathbb{N} \rightarrow$ Bool $) . P \leftrightarrow \exists k \cdot s_{k}=$ true
" $P$ decidable in $\omega$ steps" (??)
" $P$ semidecidable"

## Semidecidability via ordinals

Via these translations: For any proposition $P$,
$\exists(y: \mathcal{B}) . P \leftrightarrow(y>\omega) \quad \longleftrightarrow \quad \exists(s: \mathbb{N} \rightarrow$ Bool $) . P \leftrightarrow \exists k \cdot s_{k}=$ true
" $P$ decidable in $\omega$ steps" (??)
" $P$ semidecidable"

What if we swap $\omega$ for another ordinal $\alpha$ ?

$$
\begin{aligned}
& \exists(y: \mathcal{B}) \cdot P \leftrightarrow(y>\alpha) \quad \text { "decidable in } \alpha \text { steps" } \\
& (\text { or } y \geq \alpha, y=\alpha, \text { any } Q(y), \ldots \text { ) }
\end{aligned}
$$

## Fewer than $\omega$ steps

Let $n$ be a natural number. Then:

$$
\exists(y: \mathcal{B}) \cdot P \leftrightarrow(y>n)
$$

$$
P \uplus \neg P
$$

" $P$ decidable in $n$ steps"
" $P$ decidable"

## More than $\omega$ steps - an example

Twin prime conjecture (TPC):
There are arbitrarily large numbers $p$ such that $p$ and $p+2$ are both prime.
It's clearly semidecidable whether there is a twin pair $>10^{1,000,000}$, but TPC doesn't seem to be semidecidable.

## More than $\omega$ steps - an example

Twin prime conjecture (TPC):
There are arbitrarily large numbers $p$ such that $p$ and $p+2$ are both prime.
It's clearly semidecidable whether there is a twin pair $>10^{1,000,000}$, but TPC doesn't seem to be semidecidable.

However, one can show:

$$
\exists(y: \mathcal{B}) \cdot \mathrm{TPC} \leftrightarrow\left(y=\omega^{2}\right)
$$

"TPC is decidable in $\omega^{2}$ steps."
(Note: = can be replaced by $>$ or $\geq$.)

## TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow \mathcal{B}$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim: $\quad$ TPC $\quad \leftrightarrow \quad \operatorname{limit} f=\omega^{2} \quad\left[\leftrightarrow \quad \operatorname{succ}(\operatorname{limit} f)>\omega^{2}\right]$

## TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow \mathcal{B}$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim: $\quad \operatorname{TPC} \quad \leftrightarrow \quad$ limit $f=\omega^{2} \quad\left[\leftrightarrow \quad \operatorname{succ}(\right.$ limit $\left.f)>\omega^{2}\right]$
Sketch TPC $\rightarrow\left(\right.$ limit $\left.f=\omega^{2}\right):$
For any $n$, we find $k$ s.t. there are at least $n$ twin prime pairs below $k$, thus $f_{k} \geq \omega \cdot k$, thus limit $f \geq \omega \cdot \omega$. At the same time, $f$ never exceeds $\omega^{2}$.

## TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow \mathcal{B}$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim: $\quad \operatorname{TPC} \quad \leftrightarrow \quad$ limit $f=\omega^{2} \quad\left[\leftrightarrow \quad \operatorname{succ}(\operatorname{limit} f)>\omega^{2}\right]$
Sketch (limit $\left.f \geq \omega^{2}\right) \rightarrow$ TPC:

## TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow \mathcal{B}$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim: $\quad \operatorname{TPC} \quad \leftrightarrow \quad$ limit $f=\omega^{2} \quad\left[\leftrightarrow \quad \operatorname{succ}(\right.$ limit $\left.f)>\omega^{2}\right]$
Sketch (limit $f \geq \omega^{2}$ ) $\rightarrow$ TPC:
(limit $\left.f \geq \omega^{2}\right) \quad \Rightarrow \quad \exists k \cdot f_{k} \geq \omega \cdot n$
$\Rightarrow \quad \exists k . \neg \neg$ (There are at least $n$ twin primes $\leq k)$
$\Rightarrow \quad \exists k$. There are at least $n$ twin primes $\leq k$
$\Rightarrow \quad \Sigma k: \mathbb{N}$.There are at least $n$ twin primes $\leq k$
$\Rightarrow \quad$ There is a twin prime pair above $n$

## TPC's ordinal

Define a sequence $f: \mathbb{N} \rightarrow \mathcal{B}$ by:

$$
\begin{aligned}
& f 0: \equiv \text { zero } \\
& f(n+1)= \begin{cases}(f n)+\omega & \text { if } n \text { and } n+2 \text { are prime } \\
(f n)+1 & \text { else. }\end{cases}
\end{aligned}
$$

Claim: $\quad \operatorname{TPC} \quad \leftrightarrow \quad$ limit $f=\omega^{2} \quad\left[\leftrightarrow \quad \operatorname{succ}(\right.$ limit $\left.f)>\omega^{2}\right]$
Thanks for your attention!

$$
\begin{aligned}
\text { (limit } \left.f \geq \omega^{2}\right) & \Rightarrow \exists k \cdot f_{k} \geq \omega \cdot n \\
& \Rightarrow \exists k \cdot \neg \neg(\text { There are at least } n \text { twin primes } \leq k) \\
& \Rightarrow \exists k \cdot \text { There are at least } n \text { twin primes } \leq k \\
& \Rightarrow \Sigma k: \mathbb{N} . \text { There are at least } n \text { twin primes } \leq k \\
& \Rightarrow \text { There is a twin prime pair above } n
\end{aligned}
$$


[^0]:    Hydra by Kirby and Paris 1982, and pictures by PBS Infinite Series, https://youtu.be/uWwUpEY4c8o

