Partiality, Revisited

The Partiality Monad as a Quotient Inductive-Inductive Type

Thorsten Altenkirch¹ Nils Anders Danielsson² <u>Nicolai Kraus</u>¹

¹University of Nottingham ²University of Gothenburg

FoSSaCS, 26 April 2017

Partiality

Task: Given $f : \mathbb{N} \to \mathbb{N}$, find $n : \mathbb{N}$ such that f(n) = 0.

In many languages (e.g. Haskell): easy to write such a function $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Our setting: intensional **Martin-Löf type theory** (e.g. Agda)

- formal system with Σ -, Π -, identity types, ...
- can be used for programming
- potential foundation of mathematics

All functions are total!

Partiality

Our goal: A monad

 $M: \mathsf{Type} \to \mathsf{Type}$

such that M(A) is a "type of partial elements" in MLTT.

Attempt: *Maybe* monad, $M(A) :\equiv \mathbf{1} + A$. Not good, "too decidable": cannot construct suitable function $(\mathbb{N} \to \mathbb{N}) \to \mathbf{1} + \mathbb{N}$.

Attempt:
$$M(A) :\equiv \sum_{Q:Prop} (Q \to A)$$
.
(Cf. Escardó-Knapp 2017)
Here not good, "too undecidable".

Our goal: something "semidecidable".

Delay monad

Better attempt: **Delay Monad** (Capretta 2005). D(A) is the coinductive type generated by

- now : $A \rightarrow D(A)$
- later : $D(A) \rightarrow D(A)$.

Equivalent representation: functions $\mathbb{N} \rightarrow (\mathbf{1} + A)$ which become constant once they are inr(a).

Back to the problem "find a zero": Yes, we can define a function $(\mathbb{N} \to \mathbb{N}) \to D(\mathbb{N})$.

But D(A) is very intensional: later(now(a)) \neq later(later(now(a)). Our goal: more extensionality.

Delay monad, quotiented

Weak bisimilarity: binary relation \approx on D(A). Intuition: $x \approx y$ iff x and y become equal after removing some "laters", thus: later(now(a)) \approx later(later(now(a))).

Chapman, Uustalu, Veltri: *Quotienting the delay monad by weak bisimilarity* (2015). Use $D(A)/\approx$ (quotient as introduced by Hofmann). $D(_)/\approx$ is a monad on Type assuming *countable choice*.

Countable choice: $\Pi_{n:\mathbb{N}} ||A(n)|| \rightarrow ||\Pi_{n:\mathbb{N}} A(n)||$, "for every *n*, there exists A(n)" \rightarrow "there exists a function giving A(n) for every *n*".

Our goal: avoiding choice.

Quotient inductive-inductive types

We use a combination of two concepts:

- *higher inductive types* from homotopy type theory: inductive types can have constructors for equalities
- induction-induction

This combination is also used in the HoTT book to define the Cauchy reals.

- Caveat: computational interpretation conjectured, but still experimental
- Only need special case (*quotient inductive-inductive types*), examined by Dijkstra (2016).

Partiality monad, the construction

Define type (set) A_{\perp} and $\subseteq: A_{\perp} \rightarrow A_{\perp} \rightarrow \mathsf{Prop}$ simultaneously:

Inductive type (set) A_{\perp} with constructors:

$$\eta : A \to A_{\perp}$$

$$\perp : A_{\perp}$$

$$\sqcup : (\sum_{s:\mathbb{N}\to A_{\perp}} \prod_{n:\mathbb{N}} s_n \subseteq s_{n+1}) \to A_{\perp}$$

$$\alpha : \prod_{x,y:A_{\perp}} x \subseteq y \to y \subseteq x \to x = y$$

Inductive relation \subseteq given by the rules:

$$\frac{x \sqsubseteq y \qquad y \sqsubseteq z}{x \sqsubseteq x} \qquad \frac{x \sqsubseteq y \qquad y \sqsubseteq z}{x \sqsubseteq z} \qquad \frac{1 \sqsubseteq x}{1 \sqsubseteq x}$$

$$\frac{\prod_{n:\mathbb{N}} s_n \sqsubseteq \sqcup(s, p)}{\square(s, p) \sqsubseteq x}$$

Further characterisations

Note: categories can be defined internally:

- **SET** types (actually *sets*)
- ωCPO types (sets) with structure making them
 ω-complete partial orders

Connection between the constructions

Assuming countable choice, our construction is equivalent to Chapman-Uustalu-Veltri's:

$$A_{\perp} \simeq D(A)/\approx$$

Why do we need countable choice?

$$\checkmark w: D(A) \to A_{\perp}$$

✓ w preserves weak bisimilarity (≈)

$$\checkmark (w(d) = w(e)) \rightarrow (d \approx e)$$

! surjectivity:
$$\prod_{x:A_{\perp}} \| \sum_{d:D(A)} w(d) = x \|$$

Induction on *x*; case $x \equiv \sqcup s$ needs countable choice

Final words

Some applications:

- non-terminating functions as fixed points, e.g. $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}_{\perp}$
- functions from the Cauchy reals, developed further by Gilbert (2017)
- topology with $\mathbf{1}_{\scriptscriptstyle \perp},\,\ldots$

We have formalised this in Agda.

Take home message:

Constructing an inductive type simultaneously with its equalities is also useful "outside homotopy type theory".

Thank you for your attention!