Partiality, Revisited

The Partiality Monad as a
Quotient Inductive-Inductive Type

Thorsten Altenkirch® Nils Anders Danielsson?
Nicolai Kraus!

LUniversity of Nottingham 2University of Gothenburg

FoSSaCs, 26 April 2017

Partiality

Task: Given f:N - N, find n: N such that f(n) =0.)

In many languages (e.g. Haskell):
easy to write such a function (N - N) - N

v

Our setting: intensional Martin-Lof type theory (e.g. Agda)
e formal system with >-, l1-, identity types, ...
e can be used for programming

e potential foundation of mathematics

All functions are total!

Partiality
Our goal: A monad
M : Type — Type

such that M(A) is a “type of partial elements” in MLTT.

Attempt: Maybe monad, M(A) :=1+ A.
Not good, “too decidable:
cannot construct suitable function (N - N) - 1 +N.

Attempt: M(A) = Loprop (Q = A).
(Cf. Escardo-Knapp 2017)
Here not good, “too undecidable”.

Our goal: something “semidecidable”.

Delay monad

Better attempt: Delay Monad (Capretta 2005).
D(A) is the coinductive type generated by

e now: A - D(A)

e later: D(A) - D(A).
Equivalent representation: functions N — (1 + A) which
become constant once they are inr(a).

Back to the problem “find a zero”:
Yes, we can define a function (N - N) - D(N).

But D(A) is very intensional:
later(now(a)) # later(later(now(a)).

Our goal: more extensionality.

Delay monad, quotiented

Weak bisimilarity: binary relation ~ on D(A).
Intuition: x ~ y iff x and y become equal after removing
some “laters”, thus: later(now(a)) ~ later(later(now(a))).

Chapman, Uustalu, Veltri:
Quotienting the delay monad by weak bisimilarity (2015).

Use D(A)/~ (quotient as introduced by Hofmann).

D(_)/~is a monad on Type assuming countable choice.

Countable choice: M,y [A(N)| = |Ma.n A(n)],
“for every n, there exists A(n)" — “there exists a function
giving A(n) for every n'".

Our goal: avoiding choice.

Quotient inductive-inductive types

We use a combination of two concepts:
e higher inductive types from homotopy type theory:
inductive types can have constructors for equalities
e induction-induction
This combination is also used in the HoTT book to define
the Cauchy reals.

v

e Caveat: computational interpretation conjectured, but
still experimental

e Only need special case (quotient inductive-inductive
types), examined by Dijkstra (2016).

v

Partiality monad, the construction
Define type (set) A, and c: A, —» A, - Prop simultaneously:

Inductive type (set) A, with constructors:

n:A->A

1L A

U (Zenoa, Mo Sn € Spe1) = AL
o Ml ya XEYy > YEX>X=Y

Inductive relation given by the rules:

XCy yEZ

M S E U(S, p) u(s, p) € x

Further characterisations

We get an adjunction:

our construction

/—\

SET 1 wCPO

forgetting structure

Note: categories can be defined internally:
e SET — types (actually sets)

e WCPO — types (sets) with structure making them
w-complete partial orders

Connection between the constructions

Assuming countable choice, our construction is equivalent to
Chapman-Uustalu-Veltri's:

AL = D(A)/~

Why do we need countable choice?
vV w:D(A) > A,
v/ w preserves weak bisimilarity (~)
v (w(d) =w(e) - (d=~e)

I surjectivity: M., sz:D(A) w(d) = XH
Induction on x; case x = us needs countable choice

Final words
Some applications:
e non-terminating functions as fixed points,
ed. (N> N) >N,
e functions from the Cauchy reals, developed further by
Gilbert (2017)
e topology with 1,, ...

We have formalised this in Agda.

Take home message:
Constructing an inductive type simultaneously with its
equalities is also useful “outside homotopy type theory".

Thank you for your attention!

