
Partiality, Revisited
The Partiality Monad as a

Quotient Inductive-Inductive Type

Thorsten Altenkirch1 Nils Anders Danielsson2

Nicolai Kraus1

1University of Nottingham 2University of Gothenburg

FoSSaCS, 26 April 2017



Partiality

Task: Given f ∶ N → N, find n ∶ N such that f (n) = 0.

In many languages (e.g. Haskell):
easy to write such a function (N → N) → N

Our setting: intensional Martin-Löf type theory (e.g. Agda)

● formal system with Σ-, Π-, identity types, . . .

● can be used for programming

● potential foundation of mathematics

All functions are total!



Partiality

Our goal: A monad

M ∶ Type → Type

such that M(A) is a “type of partial elements” in MLTT.

Attempt: Maybe monad, M(A) ∶≡ 1 + A.
Not good, “too decidable”:
cannot construct suitable function (N → N) → 1 + N.

Attempt: M(A) ∶≡ ΣQ∶Prop (Q → A).
(Cf. Escardó-Knapp 2017)
Here not good, “too undecidable”.

Our goal: something “semidecidable”.



Delay monad

Better attempt: Delay Monad (Capretta 2005).
D(A) is the coinductive type generated by

● now ∶ A → D(A)

● later ∶ D(A) → D(A).

Equivalent representation: functions N → (1 + A) which
become constant once they are inr(a).

Back to the problem “find a zero”:
Yes, we can define a function (N → N) → D(N).

But D(A) is very intensional:
later(now(a)) /= later(later(now(a)).

Our goal: more extensionality.



Delay monad, quotiented

Weak bisimilarity: binary relation ≈ on D(A).
Intuition: x ≈ y iff x and y become equal after removing
some “laters”, thus: later(now(a)) ≈ later(later(now(a))).

Chapman, Uustalu, Veltri:
Quotienting the delay monad by weak bisimilarity (2015).

Use D(A)/≈ (quotient as introduced by Hofmann).

D(_)/≈ is a monad on Type assuming countable choice.

Countable choice: Πn∶N ∥A(n)∥ → ∥Πn∶N A(n)∥,
“for every n, there exists A(n)” → “there exists a function
giving A(n) for every n”.

Our goal: avoiding choice.



Quotient inductive-inductive types

We use a combination of two concepts:

● higher inductive types from homotopy type theory:
inductive types can have constructors for equalities

● induction-induction

This combination is also used in the HoTT book to define
the Cauchy reals.

● Caveat: computational interpretation conjectured, but
still experimental

● Only need special case (quotient inductive-inductive
types), examined by Dijkstra (2016).



Partiality monad, the construction
Define type (set) A� and ⊑∶ A� → A� → Prop simultaneously:

Inductive type (set) A� with constructors:

η ∶ A → A�
� ∶ A�
⊔ ∶ (Σs ∶N→A� Πn∶N sn ⊑ sn+1) → A�
α ∶ Πx,y ∶A� x ⊑ y → y ⊑ x → x = y

Inductive relation ⊑ given by the rules:

x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z � ⊑ x

Πn∶N sn ⊑ ⊔(s, p)

Πn∶N sn ⊑ x

⊔(s, p) ⊑ x



Further characterisations

We get an adjunction:

SET ωCPO

our construction

forgetting structure

�

Note: categories can be defined internally:

● SET – types (actually sets)

● ωCPO – types (sets) with structure making them
ω-complete partial orders



Connection between the constructions

Assuming countable choice, our construction is equivalent to
Chapman-Uustalu-Veltri’s:

A� ≃ D(A)/≈

Why do we need countable choice?

! w ∶ D(A) → A�
! w preserves weak bisimilarity (≈)

! (w(d) = w(e)) → (d ≈ e)

! surjectivity: Πx ∶A� ∥Σd ∶D(A)w(d) = x∥
Induction on x ; case x ≡ ⊔s needs countable choice



Final words
Some applications:

● non-terminating functions as fixed points,
e.g. (N → N) → N�

● functions from the Cauchy reals, developed further by
Gilbert (2017)

● topology with 1�, . . .

We have formalised this in Agda.

Take home message:
Constructing an inductive type simultaneously with its
equalities is also useful “outside homotopy type theory”.

Thank you for your attention!


