Eliminating out of Truncations

HoTT/UF Workshop, Warsaw
(mostly based on arXiv:1411.2682,
to appear in TYPES'14)

Nicolai Kraus

University of Nottingham

$$
30 / 06 / 15
$$

General Question

What is $\|A\|_{n} \rightarrow B \quad$?

I mainly talk about:

What is $\quad\|A\| \rightarrow B \quad$?

(where $\|-\|$ is the propositional truncation, i.e. $n \equiv-1$.)

What is a function $g:\|A\| \rightarrow B \quad$?

A function $f: A \rightarrow B$ that cannot look at its input?

$$
\text { wconst }_{f}: \equiv \prod_{a_{1}, a_{2}: A} f\left(a_{1}\right)=f\left(a_{2}\right) .
$$

$$
\begin{gathered}
\text { Theorem } \\
(\|A\| \rightarrow B) \simeq \quad \simeq(f: A \rightarrow B) . \text { wconst }_{f} \\
\text { if } B \text { is a } 0 \text {-type }(\mathrm{h} \text {-set }) .
\end{gathered}
$$

First coherence condition

$$
\text { wconst }_{f}: \equiv \Pi_{a_{1}, a_{2}: A} f\left(a_{1}\right)=f\left(a_{2}\right)
$$

Coherence condition on $c:$ wconst $_{f}$

$$
\operatorname{coh}_{f, c}: \equiv \Pi_{a^{1} a^{2} a^{3}: A} c\left(a^{1}, a^{2}\right) \cdot c\left(a^{2}, a^{3}\right)=c\left(a^{1}, a^{3}\right) .
$$

Theorem

$$
\begin{gathered}
(\|A\| \rightarrow B) \simeq \quad \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c: \text { wconst }_{f}\right) \cdot \operatorname{coh}_{f, c} \\
\text { if } B \text { is a 1-type. }
\end{gathered}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.
B

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{\mathfrak{o}}: A$ is given.

$$
\begin{gathered}
\Sigma\left(f_{1}: B\right) . \\
\mathbf{1}
\end{gathered}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \quad \mathbf{1}
\end{aligned}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \text { wconst }_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) .
\end{aligned}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \text { wconst }_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) . \\
& \Sigma\left(c_{2}: f\left(\mathfrak{a}_{0}\right)=f_{1}\right) \cdot \Sigma\left(d_{3}: c\left(\mathfrak{a}_{0}, \mathfrak{a}_{0}\right) \cdot c_{1}\left(\mathfrak{a}_{0}\right)=c_{2}\right) . \\
& \quad \mathbf{1}
\end{aligned}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \text { wconst }_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) . \\
& \Sigma\left(c_{2}: f\left(\mathfrak{a}_{0}\right)=f_{1}\right) \cdot \Sigma\left(d_{3}: c\left(\mathfrak{a}_{0}, \mathfrak{a}_{0}\right) \cdot c_{1}\left(\mathfrak{a}_{0}\right)=c_{2}\right) . \\
& \Sigma\left(d: \operatorname{coh}_{f, c}\right) .
\end{aligned}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \operatorname{wconst}_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) . \\
& \Sigma\left(c_{2}: f\left(\mathfrak{a}_{0}\right)=f_{1}\right) . \Sigma\left(d_{3}: c\left(\mathfrak{a}_{0}, \mathfrak{a}_{0}\right) \cdot c_{1}\left(\mathfrak{a}_{0}\right)=c_{2}\right) . \\
& \Sigma\left(d: \operatorname{coh}_{f, c}\right) . \\
& \Sigma\left(d_{2}: \Pi_{a: A} c\left(\mathfrak{a}_{0}, a\right) \cdot c_{1}(a)=c_{2}\right) .
\end{aligned}
$$

$$
1
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \text { wconst }_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) . \\
& \Sigma\left(c_{2}: f\left(\mathfrak{a}_{0}\right)=f_{1}\right) \cdot \Sigma\left(d_{3}: c\left(\mathfrak{a}_{0}, \mathfrak{a}_{0}\right) \cdot c_{1}\left(\mathfrak{a}_{0}\right)=c_{2}\right) . \\
& \Sigma\left(d: \operatorname{coh}_{f, c}\right) . \\
& \Sigma\left(d_{2}: \Pi_{a: A} c\left(\mathfrak{a}_{0}, a\right) \cdot c_{1}(a)=c_{2}\right) . \\
& \quad \mathbf{1}
\end{aligned}
$$

Proof of $\quad(\|A\| \rightarrow B) \simeq \quad \Sigma(f: A \rightarrow B) . \Sigma\left(c:\right.$ wconst $\left._{f}\right)$. coh $_{f, c}$

Assume $\mathfrak{a}_{0}: A$ is given.

$$
\begin{aligned}
& \Sigma\left(f_{1}: B\right) . \\
& \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c_{1}: \Pi_{a: A} f(a)=f_{1}\right) . \\
& \Sigma\left(c: \text { wconst }_{f}\right) \cdot \Sigma\left(d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right)\right) \cdot \\
& \Sigma\left(c_{2}: f\left(\mathfrak{a}_{0}\right)=f_{1}\right) \cdot \Sigma\left(d_{3} \cdot c\left(\mathfrak{a}_{0}, \mathfrak{a}_{0}\right) \cdot c_{1}\left(\mathfrak{a}_{0}\right)=c_{2}\right) \cdot \\
& \Sigma\left(d: \operatorname{coh}_{f, c}\right) . \\
& \Sigma\left(d_{2}: \Pi_{a: A} c\left(\mathfrak{a}_{0}, a\right) \cdot c_{1}(a)=c_{2}\right) . \\
& \quad \mathbf{1}
\end{aligned}
$$

$$
\text { Proof of } \quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c: \text { wconst }_{f}\right) . \text { coh }_{f, c}
$$

Assume $\mathfrak{a}_{0}: A$ is given.

```
\Sigma(f}\mp@subsup{f}{1}{\prime}:B)
\Sigma(f:A->B).\Sigma(\mp@subsup{c}{1}{}:\mp@subsup{\Pi}{a:A}{}f(a)=\mp@subsup{f}{1}{}).
\Sigma(c:\mp@subsup{wconst }{f}{})\cdot\Sigma(\mp@subsup{d}{1}{}\cdot\mp@subsup{\Pi}{\mp@subsup{a}{}{1}\mp@subsup{a}{}{2}:A}{A}c(\mp@subsup{a}{}{1},\mp@subsup{a}{}{2})\cdotc, (\mp@subsup{a}{}{2})=c
\Sigma(c}\mp@subsup{c}{2}{}:f(\mp@subsup{\mathfrak{a}}{0}{})=\mp@subsup{f}{1}{})\cdot\Sigma(\mp@subsup{d}{3}{}\cdotc(\mp@subsup{\mathfrak{a}}{0}{},\mp@subsup{\mathfrak{a}}{0}{})\cdot\mp@subsup{c}{1}{}(\mp@subsup{\mathfrak{a}}{0}{})=\mp@subsup{c}{2}{})
\Sigma(d: coh f,c})
\Sigma(d
1
```

$$
\text { Proof of } \quad(\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) . \Sigma\left(c: \text { wconst }_{f}\right) \cdot \text { coh }_{f, c}
$$

Assume $\mathfrak{a}_{\mathfrak{o}}: A$ is given.

```
\Sigma(fl:B).
```



```
\Sigma(c:\mp@subsup{wconst }{f}{}).\Sigma
\Sigma(c\mp@subsup{c}{2}{}:f(\mp@subsup{\mathfrak{a}}{0}{})=\mp@subsup{f}{1}{})\cdot\Sigma(\mp@subsup{d}{3}{}\cdotc(\mp@subsup{\mathfrak{a}}{0}{},\mp@subsup{\mathfrak{a}}{0}{})\cdot\mp@subsup{c}{1}{}(\mp@subsup{\mathfrak{a}}{0}{})=\mp@subsup{c}{2}{}).
\Sigma(d: coh 
```



```
    1
```

Assuming $\mathfrak{a}_{0}: A$, we have constructed an equivalence

$$
g: B \rightarrow \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c: \text { wconst }_{f}\right) \cdot \operatorname{coh}_{f, c} .
$$

By examining the steps, we see that the function is

$$
g(b) \equiv\left(\lambda_{-} \cdot b, \lambda_{-},- \text {refl }_{b}, \lambda_{-},-,- \text {refl }_{\text {refl }}\right) .
$$

It does not depend on \mathfrak{a}_{0} !

$$
\begin{aligned}
A & \rightarrow \operatorname{isequiv}(g) \\
\text { thus } \quad\|A\| & \rightarrow \operatorname{isequiv}(g) .
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \|A\| \rightarrow \quad\left(B \simeq \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c: \text { wconst }_{f}\right) \cdot \operatorname{coh}_{f, c}\right) \\
& (\|A\| \rightarrow B) \simeq \Sigma(f: A \rightarrow B) \cdot \Sigma\left(c: \text { wconst }_{f}\right) \cdot \operatorname{coh}_{f, c}
\end{aligned}
$$

This strategy is so frugal that it can be done at any level, with minimalistic assumptions on the theory: we need $\mathbf{1}, \Sigma, \Pi$, Id with function extensionality, $\|-\|$.

Main result: In a type theory with Reedy $\omega^{\text {op_limits (infinite }}$ \sum-types), the type $\|A\| \rightarrow B$ corresponds to the type of coherently constant functions $A \rightarrow B$.

Setting: type-theoretic fibration category (Shulman, Univalence for inverse diagrams and homotopy canonicity)

Main part of this talk: a very, very rough outline of the proof.

Coherently constant functions are morphisms between semi-simplicial types ($\Delta_{+}^{\circ p} \rightarrow$ Type)

$\mathcal{T A}: \Delta_{+}^{\mathrm{op}} \rightarrow$ Type
[0]-coskeleton of A
$\mathcal{E} B: \Delta_{+}^{\mathrm{op}} \rightarrow$ Type
Fibrant replacement of B

On the Equality Semi-Simplicial Type $\mathcal{E B}$

$\mathcal{E} B_{[n]}$ is the type of n-dimensional tetrahedra, built of the identity type (defined as a Shulman-kind diagram over the inverse category $\Delta_{+}^{\text {op }}$). We can also define the type of horns.

Important Kan-filling lemma: The projection from full tetrahedra to the type of (k-)horns is an equivalence.
(Side remark: This is a strong "Kan filling" property and gives a "simplicial" version of Lumsdaine's / van den Berg-Garner's "globular" result that types are weak ω-groupoids.)

Nat. trans. between $\widehat{\mathcal{T} A}$ and $\widehat{\mathcal{E} B}$ (extended index cat. $\widehat{\Delta_{+}^{\text {op }} \text {) }}$

$$
\begin{aligned}
& d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right) \\
& d: \operatorname{coh}_{f, c} \\
& c: \text { wconst }
\end{aligned}
$$

Kan-filling lemma $\Rightarrow \ldots$ extensive calculation $\ldots \Rightarrow$ Any two Σ-components connected by a "diagonal arrow" form a contractible pair!

Nat. trans. between $\widehat{\mathcal{T} A}$ and $\widehat{\mathcal{E} B}$ (extended index cat. $\widehat{\Delta_{+}^{\text {op }} \text {) }}$

$$
\begin{aligned}
& d_{1}: \Pi_{a^{1} a^{2}: A} c\left(a^{1}, a^{2}\right) \cdot c_{1}\left(a^{2}\right)=c_{1}\left(a^{1}\right) \\
& d: \operatorname{coh}_{f, c} \\
& c: \text { wconst }_{f}
\end{aligned}
$$

Kan-filling lemma $\Rightarrow \ldots$ extensive calculation $\ldots \Rightarrow$ Any two Σ-components connected by a "diagonal arrow" form a contractible pair!

Rest as in the special case:

- Assuming $\mathfrak{a}_{\mathrm{o}}: A$, we have shown that the can. map

$$
B \rightarrow \text { nat. trans. from } \mathcal{T A} \text { to } \mathcal{E} B
$$

is an equivalence.

- This map is independent of \mathfrak{a}_{0}.
- Thus, $\|A\|$ implies that this map is an equivalence.
- Therefore:

Theorem

$(\|A\| \rightarrow B) \simeq$ nat. trans. from $\mathcal{T A}$ to $\mathcal{E} B$
in any theory with $\mathbf{1}, \Sigma, \Pi$, Id, fun.ext., $\|-\|$,
Reedy $\omega^{\text {op }}$-limits.
If you don't like Reedy ω-limits, you still get all the cases where B is n-truncated.

Higher Truncations

What is $\|A\|_{n} \rightarrow B \quad$?

Conjecture: Natural Transformations from the $[\mathrm{n}+1]$-coskeleton of $\mathcal{E A}$ to $\mathcal{E} B$.

$$
\text { This talk: Case } n \equiv-1 \text {. }
$$

Paolo Capriotti, N.K., Andrea Vezzosi: Proof for the case that B is $(n+1)$-truncated (to appear at CSL'15).

Caveat, wild speculation following.
Case $n \equiv 0$ can be used to solve the open problem
"univalent type theory eats itself"
with n univalent universes, but without HITs; trick: interpret \mathcal{U}_{i} as universe of i-types.

