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Equalities

(λx.x)y ≡ y
(a judgment)

n + 4 = 4 + n
(a type)

Which equalities do we want to be judgmental/definitional?
Consequences?

Can we prove more stuff if more equalities are judgmental?

E.g.: If we have equality reflection
x = y
x ≡ y

(“extensional

MLTT”), we can:
▸ derive UIP/K: (x ∶ A) → (p ∶ x = x) → (p = refl), because
(x, y ∶ A) → (p ∶ x = y) → p = refl does now type-check.

▸ prove function extensionality.
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Conservativity

Hofmann 1995 (cf. Oury 2005)

If:
▸ A is a type in intensional MLTT with funext and UIP
▸ A is inhabited in extensional MLTT

Then:
▸ A is inhabited in intensional MLTT with funext and UIP

Our setting: Intensional MLTT with funext (+ univalence +
. . . ). What happens if we remove/add judgmental equalities?
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Weak J

Write IA for Σx,y∶Ax = y.
The type of the equality eliminator is:

J ∶ (A ∶ U) → (P ∶ IA → U) → (d ∶ (x ∶ A) → P (x,x, refl))
→(q ∶ IA) → P (q).

The usual judgmental β-rule says JA,P,d(x,x, refl) ≡ d(x).
What happens if we replace it by

Jβ ∶ (A ∶ U) → (P ∶ IA → U) → (d ∶ (x ∶ A) → P (x,x, refl))
→(x ∶ A) → JA,P,d(x,x, refl) = d(x)

(“weak J”) - do we lack coherence?
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Example: subst

Recall: Given

A ∶ U P ∶ A→ U x, y ∶ A p ∶ x = y

we have
substA,P,p ∶ P (x) → P (y).

From “weak J”, we can only derive

substA,Pβ ∶ (q ∶ P (x)) → substA,P,refl(q) = q.
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(substA,P,refl, substA,Pβ ) ∶ Σf ∶P (x)→P (x)((q ∶ P (x)) → f(q) = q)

And: (substA,P,refl, substA,Pβ ) = (idP (x), λq.refl)
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Example: subst
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Weak J revisited
Write IA for Σx,y∶Ax = y.
The types of J and its (weak) β-rule are:

J ∶ (A ∶ U) → (P ∶ IA → U) → (d ∶ (x ∶ A) → P (x,x, refl))
→(q ∶ IA) → P (q)

Jβ ∶ (A ∶ U) → (P ∶ IA → U) → (d ∶ (x ∶ A) → P (x,x, refl))
→(x ∶ A) → JA,P,d(x,x, refl) = d(x)

A→ IA, x↦ (x,x, refl) is an equivalence.

Conjecture: “Normal” MLTT is conservative over
MLTT with weak J.

Thank you!
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