Type Theory with Weak J

Thorsten Altenkirch Paolo Capriotti Thierry Coquand Nils Anders Danielsson Simon Huber Nicolai Kraus

TYPES, Budapest, 1 June 2017

Report of a discussion between:

Thorsten Altenkirch Paolo Capriotti Thierry Coquand Nils Anders Danielsson Simon Huber Nicolai Kraus

TYPES, Budapest, 1 June 2017

Equalities

$$
\begin{array}{cc}
(\lambda x \cdot x) y \equiv y & n+4=4+n \\
\text { (a judgment) } & \text { (a type) }
\end{array}
$$

Equalities

$$
\begin{aligned}
& (\lambda x . x) y \equiv y \\
& \text { (a judgment) }
\end{aligned}
$$

$$
n+4=4+n
$$

(a type)

Which equalities do we want to be judgmental/definitional? Consequences?

Equalities

$$
\begin{array}{cc}
(\lambda x \cdot x) y \equiv y & n+4=4+n \\
\text { (a judgment) } & \text { (a type) }
\end{array}
$$

Which equalities do we want to be judgmental/definitional? Consequences?

Can we prove more stuff if more equalities are judgmental?

Equalities

$(\lambda x . x) y \equiv y$
(a judgment)

$$
n+4=4+n
$$

(a type)

Which equalities do we want to be judgmental/definitional? Consequences?
Can we prove more stuff if more equalities are judgmental?
E.g.: If we have equality reflection $\frac{x=y}{x \equiv y}$ ("extensional MLTT'), we can:

- derive UIP/K: $(x: A) \rightarrow(p: x=x) \rightarrow(p=\mathrm{refl})$,

Equalities

$(\lambda x . x) y \equiv y$
(a judgment)

$$
n+4=4+n
$$

(a type)

Which equalities do we want to be judgmental/definitional? Consequences?
Can we prove more stuff if more equalities are judgmental?
E.g.: If we have equality reflection $\frac{x=y}{x \equiv y}$ ("extensional MLTT'), we can:

- derive UIP/K: $(x: A) \rightarrow(p: x=x) \rightarrow(p=$ refl $)$, because $(x, y: A) \rightarrow(p: x=y) \rightarrow p=$ refl does now type-check.

Equalities

$(\lambda x . x) y \equiv y$
(a judgment)

$$
n+4=4+n
$$

(a type)

Which equalities do we want to be judgmental/definitional? Consequences?
Can we prove more stuff if more equalities are judgmental?
E.g.: If we have equality reflection $\frac{x=y}{x \equiv y}$ ("extensional MLTT'), we can:

- derive UIP/K: $(x: A) \rightarrow(p: x=x) \rightarrow(p=$ refl $)$, because $(x, y: A) \rightarrow(p: x=y) \rightarrow p=$ refl does now type-check.
- prove function extensionality.

Conservativity

Hofmann 1995 (cf. Oury 2005)
If:

- A is a type in intensional MLTT with funext and UIP
- A is inhabited in extensional MLTT

Then:

- A is inhabited in intensional MLTT with funext and UIP

Conservativity

Hofmann 1995 (cf. Oury 2005)

If:

- A is a type in intensional MLTT with funext and UIP
- A is inhabited in extensional MLTT

Then:

- A is inhabited in intensional MLTT with funext and UIP

Our setting: Intensional MLTT with funext (+ univalence + ...). What happens if we remove/add judgmental equalities?

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The type of the equality eliminator is:

$$
\begin{aligned}
\mathrm{J}: & (A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow\left(q: I_{A}\right) \rightarrow P(q) .
\end{aligned}
$$

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The type of the equality eliminator is:

$$
\begin{aligned}
\mathrm{J}: & (A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow\left(q: I_{A}\right) \rightarrow P(q) .
\end{aligned}
$$

The usual judgmental β-rule says $\mathrm{J}^{A, P, d}(x, x$, refl $) \equiv d(x)$.

Weak J

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The type of the equality eliminator is:

$$
\begin{aligned}
\mathrm{J}: & (A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow\left(q: I_{A}\right) \rightarrow P(q)
\end{aligned}
$$

The usual judgmental β-rule says $\mathrm{J}^{A, P, d}(x, x$, refl $) \equiv d(x)$.
What happens if we replace it by

$$
\begin{aligned}
\mathrm{J}_{\beta}: & (A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow \mathrm{J}^{A, P, d}(x, x, \text { refl })=d(x)
\end{aligned}
$$

("weak J") - do we lack coherence?

Example: subst

Recall: Given

$$
A: \mathcal{U} \quad P: A \rightarrow \mathcal{U} \quad x, y: A \quad p: x=y
$$

we have

$$
\text { subst }^{A, P, p}: P(x) \rightarrow P(y) .
$$

Example: subst

Recall: Given

$$
A: \mathcal{U} \quad P: A \rightarrow \mathcal{U} \quad x, y: A \quad p: x=y
$$

we have

$$
\text { subst }^{A, P, p}: P(x) \rightarrow P(y) .
$$

Usually, we have subst $^{A, P, \text { refl }}(q) \equiv q$.

Example: subst

Recall: Given

$$
A: \mathcal{U} \quad P: A \rightarrow \mathcal{U} \quad x, y: A \quad p: x=y
$$

we have

$$
\operatorname{subst}^{A, P, p}: P(x) \rightarrow P(y)
$$

Usually, wave subst ${ }^{A, P, \text { refl }}(q) \equiv q$.
From "weak J", we can only derive

$$
\operatorname{subst}_{\beta}^{A, P}:(q: P(x)) \rightarrow \text { subst }^{A, P, \text { refl }}(q)=q .
$$

Example: subst

Example: subst

$\left(\right.$ subst $^{A, P, \text { refl }}$, subst $\left._{\beta}^{A, P}\right): \Sigma_{f: P(x) \rightarrow P(x)}((q: P(x)) \rightarrow f(q)=q)$

Example: subst

$\left(\right.$ subst $^{A, P, \text { refl }}$, subst $\left._{\beta}^{A, P}\right): \Sigma_{f: P(x) \rightarrow P(x)}((q: P(x)) \rightarrow f(q)=q)$

And:

$$
\left(\text { subst }^{A, P, \text { refl }}, \text { subst }_{\beta}^{A, P}\right)=\left(\operatorname{id}_{P(x)}, \lambda q . \text { refl }\right)
$$

Example: subst

$\left(\right.$ subst $^{A, P, \text { refl }}$, subst $\left._{\beta}^{A, P}\right): \Sigma_{f: P(x) \rightarrow P(x)}((q: P(x)) \rightarrow f(q)=q)$

And:

$$
\left(\operatorname{subst}^{A, P, \text { refl }}, \text { subst }_{\beta}^{A, P}\right)=\left(\operatorname{id}_{P(x)}, \lambda q . \text { refl }\right)
$$

Weak J revisited

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The types of J and its (weak) β-rule are:

$$
\begin{aligned}
& \mathrm{J}: \quad(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow\left(q: I_{A}\right) \rightarrow P(q) \\
& \mathrm{J}_{\beta}:(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow \mathrm{J}^{A, P, d}(x, x, \text { refl })=d(x)
\end{aligned}
$$

Weak J revisited

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The types of J and its (weak) β-rule are:

$$
\left.\begin{array}{rl}
\mathrm{J}: \quad(A: \mathcal{U}) & \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow\left(q: I_{A}\right)
\end{array}\right) P P(q) .
$$

Weak J revisited

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The types of J and its (weak) β-rule are:

$$
\begin{aligned}
& \mathrm{J}: \quad(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow P(x, x, \text { refl }) \\
& \mathrm{J}_{\beta}: \quad(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow \mathrm{J}^{A, P, d}(x)=d(x) \\
& A \rightarrow I_{A}, \quad x \mapsto(x, x, \text { refl }) \quad \text { is an equivalence. }
\end{aligned}
$$

Weak J revisited

Write I_{A} for $\Sigma_{x, y: A} x=y$.
The types of J and its (weak) β-rule are:

$$
\begin{aligned}
& \mathrm{J}: \quad(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow P(x, x, \text { refl }) \\
& \mathrm{J}_{\beta}: \quad(A: \mathcal{U}) \rightarrow\left(P: I_{A} \rightarrow \mathcal{U}\right) \rightarrow(d:(x: A) \rightarrow P(x, x, \text { refl })) \\
& \rightarrow(x: A) \rightarrow \mathrm{J}^{A, P, d}(x)=d(x)
\end{aligned}
$$

$A \rightarrow I_{A}, \quad x \mapsto(x, x, \mathrm{refl}) \quad$ is an equivalence.
Conjecture: "Normal" MLTT is conservative over MLTT with weak J.

Thank you!

