Induction for Cycles

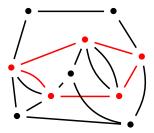
Nicolai Kraus

jww Jakob von Raumer

Types in Munich '20 (online substitution thereof) 11 March 2020

based on arxiv.org/abs/2001.07655

General Problem

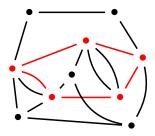


Consider paths in a graph.

If we want to prove a property... - for all paths: Induction!

- for all closed paths: how???

General Problem



Consider paths in a graph.

If we want to prove a property... - for all paths: Induction!

– for all closed paths: how???

Aim of this project: approach for a special case + applications in HoTT.

Quotients in Type Theory (Hofmann)

 $\begin{array}{ll} \mbox{Given:} & A: \mbox{Set} \\ & \sim: A \to A \to \mbox{Set} \end{array}$

We get: A/\sim : Set

Property: for B : Set,

$$\simeq \frac{f: A \to B}{h: (a_1 \sim a_2) \to f(a_1) = f(a_2)}$$
$$g: (A/\sim) \to B$$

Quotients in Type Theory (Hofmann)

Given: A: Set $\sim : A \to A \to \mathsf{Set}$ We get: A/\sim : Set for B : Set. Property: $\frac{f: A \to B}{h: (a_1 \sim a_2) \to f(a_1) = f(a_2)}$ $g: (A/\sim) \to B$ In homotopy type theory:

All of this is for *sets* (aka 0-truncated types, types satisfying UIP), *"set-quotients"*

What if *B* is only 1-truncated (e.g. the universe of *sets*)?

Set-Quotients in HoTT

We get: A/\sim : Set

Property: for B : 1-Type,

$$\simeq \frac{f: A \to B}{\begin{array}{c}h: (a_1 \sim a_2) \to f(a_1) = f(a_2)\\c: (p: a \sim^{s*} a) \to h^{s*}(p) = \operatorname{refl}_{f(a)}\\g: (A/\sim) \to B\end{array}}$$

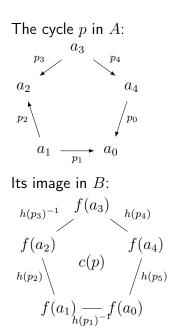
Set-Quotients in HoTT

Given: $A : \mathsf{Type}$ $\sim : A \to A \to \mathsf{Type}$

We get: A/\sim : Set

Property: for B : 1-Type,

$$\simeq \frac{f: A \to B}{h: (a_1 \sim a_2) \to f(a_1) = f(a_2)}$$
$$\frac{c: (p: a \sim^{s*} a) \to h^{s*}(p) = \operatorname{refl}_{f(a)}}{g: (A/\sim) \to B}$$



Set-Quotients in HoTT

$$\begin{array}{lll} \mbox{Given:} & A: \mbox{Type} \\ & \sim: A \rightarrow A \rightarrow \mbox{Type} \end{array}$$

We get: A/\sim : Set Proplet Instance of the general problem!!

$$\simeq \frac{f: A \to B}{h: (a_1 \sim a_2) \to f(a_1) = f(a_2)}$$
$$\frac{c: (p: a \sim^{s*} a) \to h^{s*}(p) = \operatorname{refl}_{f(a)}}{g: (A/\sim) \to B}$$

The cycle
$$p$$
 in A :
 a_3
 p_4
 a_2
 a_4
 p_2
 p_0
 a_1
 p_1
 a_0

Its image in B :
 $h(p_3)^{-1}$
 $f(a_3)$
 $h(p_4)$
 $f(a_2)$
 $f(a_4)$
 $h(p_2)$
 $c(p)$
 $f(a_4)$
 $h(p_5)$
 $f(a_1)$
 $h(p_1)^{-1}$
 $f(a_0)$

An Example in HoTT

 $\begin{array}{ll} \mbox{Given:} & M: \mbox{Set} \\ \mbox{Want:} & \textit{Free Group on } M \end{array}$

In Sets (ordinary free group):

Set-quotient $\operatorname{List}(M+M)/\sim$

$$[x_0, \dots, x_{k-1}, x_k, x_k^{-1}, x_{k+1}, \dots, x_n] \sim [x_0, \dots, x_{k-1}, x_{k-1}, x_{k+1}, \dots, x_n]$$

An Example in HoTT

In Sets (ordinary free group):

Set-quotient ${\rm List}(M+M)/\!\sim$

$$[x_0, \dots, x_{k-1}, x_k, x_k^{-1}, x_{k+1}, \dots, x_n] \sim \\[x_0, \dots, x_{k-1}, x_{k+1}, \dots, x_n]$$

Higher-categorical free group: $\Omega(\operatorname{hcolim}(M \rightrightarrows 1))$

An Example in HoTT

In Sets (ordinary free group):

Set-quotient $\operatorname{List}(M+M)/\sim$

$$\begin{bmatrix} x_0, \dots, x_{k-1}, x_k, x_k^{-1}, x_{k+1}, \dots, x_n \end{bmatrix} \sim \\ \begin{bmatrix} x_0, \dots, x_{k-1}, & x_{k+1}, \dots, x_n \end{bmatrix}$$

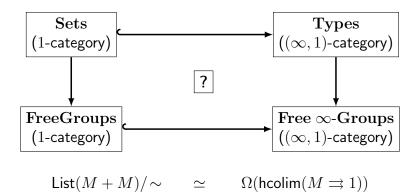
Higher-categorical free group:

 $\Omega(\mathsf{hcolim}(M\rightrightarrows 1))$

 $\begin{aligned} H :\equiv \mathsf{hcolim}(M \rightrightarrows 1) \\ \mathsf{can} \text{ be implemented as a} \\ \mathsf{higher inductive type:} \end{aligned}$

inductive Hbase : Hloops : $M \rightarrow$ base = base

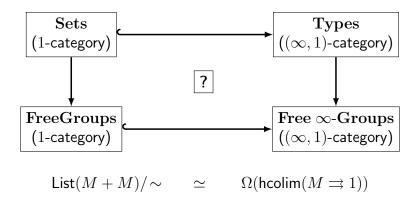
Free Groups



?

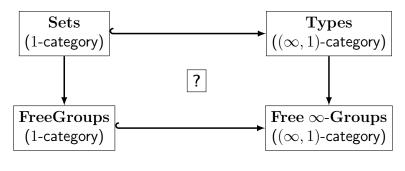
Yes, with excluded middle. Unknown (conjecture: independent) otherwise.

Free Groups



Needed: map from set-quotient into (a priori) higher type!

Free Groups



 $\operatorname{List}(M+M)/\sim \simeq \Omega(\operatorname{hcolim}(M \rightrightarrows 1))$

Needed: map from set-quotient into (a priori) higher type! First approximation: Does $\Omega(\operatorname{hcolim}(M \rightrightarrows 1))$ have trivial fundamental groups? ($\rightsquigarrow \|\Omega(\operatorname{hcolim}(M \rightrightarrows 1))\|_1$)

What would we need?

$$\label{eq:recall} \begin{split} \operatorname{Recall:} & \operatorname{List}(M+M)/{\sim} \quad \rightarrow \quad \left\|\Omega(\operatorname{hcolim}(M\rightrightarrows 1))\right\|_1 \end{split}$$

is given by:

$$\begin{aligned} f: \mathsf{List}(M+M) &\to \|\Omega(\mathsf{hcolim}(M \rightrightarrows 1))\|_1 \\ h: (\ell_1 \sim \ell_2) \to f(\ell_1) = f(\ell_2) \end{aligned}$$

c: h maps every closed zig-zag to reflexivity

What would we need?

$$\label{eq:recall} \begin{split} \mathsf{Recall:} \qquad \mathsf{List}(M+M)/\!\sim &\to & \left\|\Omega(\mathsf{hcolim}(M\rightrightarrows 1))\right\|_1 \end{split}$$

$$\begin{array}{ll} \text{is given by:} & f: \mathsf{List}(M+M) \to \|\Omega(\mathsf{hcolim}(M\rightrightarrows 1))\|_1 \\ & h: (\ell_1 \sim \ell_2) \to f(\ell_1) = f(\ell_2) \\ & c: h \text{ maps every closed zig-zag to reflexivity} \end{array}$$

easy parts:

$$f([+m_0, -m_1, +m_2]) :\equiv loops(m_0) \cdot loops(m_1)^{-1} \cdot loops(m_2)$$

 $h : (use that inverses cancel, recall the def of ~:$
 $[+m_0, -m_1, +m_1, +m_2, -m_3] \sim [+m_0, +m_2, -m_3])$

What would we need?

$$\begin{array}{ll} \text{is given by:} & f: \mathsf{List}(M+M) \to \|\Omega(\mathsf{hcolim}(M\rightrightarrows 1))\|_1 \\ & h: (\ell_1 \sim \ell_2) \to f(\ell_1) = f(\ell_2) \\ & c: h \text{ maps every closed zig-zag to reflexivity} \end{array}$$

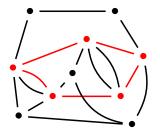
easy parts:

$$f([+m_0, -m_1, +m_2]) :\equiv \mathsf{loops}(m_0) \cdot \mathsf{loops}(m_1)^{-1} \cdot \mathsf{loops}(m_2)$$

$$h: (use that inverses cancel, recall the def of \sim: [+m_0, -m_1, +m_1, +m_2, -m_3] \sim [+m_0, +m_2, -m_3])$$

$$c: (should be true, but how to prove it?)$$

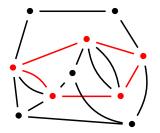
Back to Slide 1



Problem: Prove a property *for every cycle* in a graph.

Assumption: The graph is given by the symmetric closure of a relation

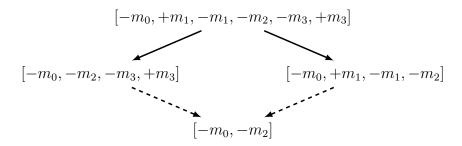
Back to Slide 1



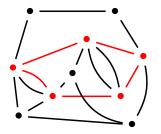
Problem: Prove a property *for every cycle* in a graph.

Assumption: The graph is given by the symmetric closure of a relation which is:

- locally confluent
- Noetherian (co-wellfounded).



Back to Slide 1



Problem: Prove a property *for every cycle* in a graph.

Assumption: The graph is given by the symmetric closure of a relation which is:

- locally confluent
- Noetherian (co-wellfounded).

Our proposed solution:

- 1. Given a relation \rightsquigarrow on A, we define a new relation \rightsquigarrow° on cycles $a \rightsquigarrow^{s*} a$.
- 2. If \rightsquigarrow is Noetherian, then so is \rightsquigarrow° .
- 3. If \rightsquigarrow further is locally confluent, then any cycle can be split into a \rightsquigarrow° -smaller cycle and a confluence cycle
 - \Rightarrow Induction is possible!

Definition. Let \rightsquigarrow be a relation on A. Then, \rightsquigarrow^{L} on List(A) is generated by $[\vec{a_1}, a, \vec{a_2}] \rightsquigarrow^{L} [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$ for all x_i with $a \rightsquigarrow x_i$.

Definition. Let \rightsquigarrow be a relation on A. Then, \rightsquigarrow^{L} on List(A) is generated by $[\vec{a_1}, a, \vec{a_2}] \rightsquigarrow^{L} [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$ for all x_i with $a \rightsquigarrow x_i$.

Lemma. (\rightsquigarrow Noetherian) \Rightarrow (\rightsquigarrow^{L} Noetherian).

Definition. Let \rightsquigarrow be a relation on A. Then, \rightsquigarrow^{L} on List(A) is generated by $[\vec{a_1}, a, \vec{a_2}] \rightsquigarrow^{L} [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$ for all x_i with $a \rightsquigarrow x_i$.

Lemma. (
$$\rightsquigarrow$$
 Noetherian) \Rightarrow (\rightsquigarrow^{L} Noetherian).

Proof.

1. If ℓ_1 and ℓ_2 are both \rightsquigarrow^L -accessible, then so is $\ell_1 + \ell_2$. (Proof: by double "accessibility induction".)

Definition. Let \rightsquigarrow be a relation on A. Then, \rightsquigarrow^{L} on List(A) is generated by $[\vec{a_1}, a, \vec{a_2}] \rightsquigarrow^{L} [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$ for all x_i with $a \rightsquigarrow x_i$.

Lemma. (
$$\rightsquigarrow$$
 Noetherian) \Rightarrow (\rightsquigarrow^{L} Noetherian).

Proof.

- 1. If ℓ_1 and ℓ_2 are both \rightsquigarrow^L -accessible, then so is $\ell_1 + \ell_2$. (Proof: by double "accessibility induction".)
- 2. If a : A is \rightsquigarrow -accessible, then [a] is \rightsquigarrow^{L} -accessible. (Proof: $[a] \rightsquigarrow^{L} [x_0, \ldots, x_k]$; induction hypothesis + above.)

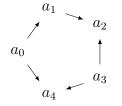
Definition. Let \rightsquigarrow be a relation on A. Then, \rightsquigarrow^{L} on List(A) is generated by $[\vec{a_1}, a, \vec{a_2}] \rightsquigarrow^{L} [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$ for all x_i with $a \rightsquigarrow x_i$.

Lemma. (
$$\rightsquigarrow$$
 Noetherian) \Rightarrow (\rightsquigarrow^{L} Noetherian).

Proof.

- 1. If ℓ_1 and ℓ_2 are both \rightsquigarrow^L -accessible, then so is $\ell_1 + \ell_2$. (Proof: by double "accessibility induction".)
- 2. If a : A is \rightsquigarrow -accessible, then [a] is \rightsquigarrow^{L} -accessible. (Proof: $[a] \rightsquigarrow^{L} [x_0, \ldots, x_k]$; induction hypothesis + above.)
- 3. If every a_i is \rightsquigarrow -accessible, then $[a_0, \ldots, a_n]$ is \rightsquigarrow^L -accessible. (Proof: first point.)

Lemma. (\rightsquigarrow Noetherian) \Rightarrow (any cycle is either empty or contains a span).



 $\mathsf{Span}: \quad a' \nleftrightarrow a \rightsquigarrow a''$

Lemma. (\rightsquigarrow Noetherian) \Rightarrow (any cycle is either empty or contains a span).

Definition. For γ a cycle, write $\varphi(\gamma)$ for the vertex sequence of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$ for any rotation δ' of δ .

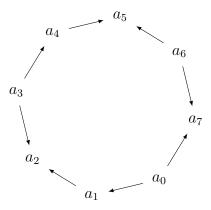
Lemma. (\rightsquigarrow Noetherian) \Rightarrow (any cycle is either empty or contains a span).

Definition. For γ a cycle, write $\varphi(\gamma)$ for the *vertex sequence* of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$ for any rotation δ' of δ .

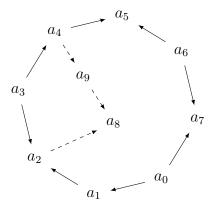
Lemma. (\rightsquigarrow Noetherian) \Rightarrow ($\rightsquigarrow^{+\circ+}$ Noetherian).

Theorem. (\rightsquigarrow Noetherian and locally confluent) \Rightarrow (any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence cycle).

Theorem. (\rightsquigarrow Noetherian and locally confluent) \Rightarrow (any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence cycle).



Theorem. (\rightsquigarrow Noetherian and locally confluent) \Rightarrow (any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence cycle).



Back to type theory: consequence

Theorem (Noetherian Cycle Induction). Given: A : Type $(\rightsquigarrow): A \to A \to \mathsf{Type}$ $P: cycles \rightarrow Type.$ Assume further: • relation ~ Noetherian and locally confluent • P stable under rotating of cycles: $P(\gamma) \rightarrow P(\text{some rotation of } \gamma)$ • *P* stable under "merging" of cycles: $P(\alpha) \to P(\beta) \to P(\alpha + \gamma)$

Then: P(empty) and $P(confluence cycle) \Rightarrow P(any cycle).$

Back to type theory: consequence

Theorem (Noetherian Cycle Induction). Given: A : Type $(\rightsquigarrow): A \to A \to \mathsf{Type}$ $P: cycles \rightarrow Type.$ Assume further: • relation ~ Noetherian and locally confluent • *P* stable under rotating of cycles: $P(\gamma) \rightarrow P(\text{some rotation of } \gamma)$ • *P* stable under "merging" of cycles: $P(\alpha) \to P(\beta) \to P(\alpha + \gamma)$

Then: P(empty) and $P(confluence cycle) \Rightarrow P(any cycle).$

These conditions are easily checked in our HoTT-examples, where $P(\gamma) :\equiv$ the cycle γ is mapped to a trivial equality.

Conclusions

- Paper: NK and Jakob von Raumer, Coherence via Wellfoundedness, arxiv.org/abs/2001.07655.
- Can show approximations to other open questions in HoTT with this.
- Non-type theoretic applications? E.g. in graph rewriting, cf. Michael Löwe, Van-Kampen pushouts for sets and graphs, 2010.
- Formalised in Lean (great job by Jakob!).

Thanks!