Non-Recursive Truncations

Nicolai Kraus

University of Nottingham

TYPES, Novi Sad 25 May 2016

Truncation

 $\exists (x : A), P(x) \text{ is not the same as } \Sigma(x : A), P(x) !$ $\coloneqq \|\Sigma(x : A), P(x)\|$

Explanation: The *[propositional] truncation* ||-|| makes a type *propositional* (all elements equal).

HoTT 2013; see also NuPRL 1986, Awodey-Bauer 2004.

	Rules for -
A is propositional	$\frac{\ A\ \to B}{A \to D}$
$A \rightarrow \ A\ $	$A \rightarrow B$ if <i>B</i> is propositional

But then, what is $||A|| \rightarrow B$?

 $||A|| \rightarrow B$ is equivalent to ...

. . .

. . .

$$\begin{split} \Sigma(f : A \to B), & \text{if } B \text{ is } (-1)\text{-type} \\ \Sigma(c : \text{wconst}_f), & \text{if } B \text{ is } 0\text{-type} \\ \Sigma(d : \text{coh}_{f,c}), & \text{if } B \text{ is } 1\text{-type} \end{split}$$

general B: infinitely many components!

. . .

note: wconst_f :=
$$\prod_{x,y:A} fx = fy$$

 $\operatorname{coh}_{f,c}$:= $\prod_{x,y,z:A} c(x,y) \cdot c(y,z) = c(x,z)$

$||A|| \rightarrow B$ for general B

$\label{eq:constraint} \begin{array}{l} \hline \mbox{Theorem [K., TYPES 2014 proceedings]} \\ \mbox{We can define Reedy fibrant $\mathcal{T}\!A$ and $\mathcal{E}\!B: \Delta^{\rm op}_+ \to \mbox{Type such} \\ \mbox{that:} \end{array}$

 $(||A|| \rightarrow B) \simeq$ nat. trans. from *TA* to *EB*

in any type theory with $\mathbf{1}, \Sigma, \Pi, \mathrm{Id}, \mathrm{fun.ext.}, \|-\|,$ Reedy ω^{op} -limits.

This (directly or indirectly) generalises

- ★ Lurie, *Higher Topos Theory*, Prop. 6.2.3.4:
 ∞-semitopos instead of Type
- * Rezk, *Toposes and Homotopy Toposes*, Prop. 7.8: model topos instead of **Type**

Truncation as a Higher Inductive Type

∥A∥ as HIT (standard construction)

$$\begin{split} |-|: A \to ||A|| \\ \mathsf{t} \quad : \Pi_{x, y: ||A||} \ x =_{||A||} y \end{split}$$

1st approximation: A_1 $f: A \rightarrow A_1$

 3^{rd} approximation: A_3 $f: A \rightarrow A_3$ $c: wconst_f$ $d: coh_{f,c}$ Can we give an equivalent definition of ||A|| with a nicer elimination principle?

 2^{nd} approximation: A_2 $f: A \rightarrow A_2$ $c: \text{wconst}_f$

 $||A|| \simeq ||A_1||_0 \simeq ||A_2||_1 \simeq \dots$ Easier elimination principle into 0-, or 1-, or ...-types!

Purely non-recursive representations, I

We could try to consider the homotopy colimit of

$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \ldots$$

which should be ||A||.

Problem: for any *n*, we can write down A_n . However, we **cannot** write down $A : \mathbb{N} \to \mathcal{U}$.

("Semisimplicial Types Phenomenon")

Purely non-recursive representations, II

Solution: Make the sequence $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \dots$ "coarser".

- van Doorn (CPP'16), independent of my analysis: do the first approximation in every step (easy to prove correct, but no finite special cases).
- ★ K. (LiCS'16): construct A_{n+1} by taking A_n and adding fillers for Sⁿ⁻¹ → A_n
 (harder to prove correct, but useful finite special cases);
 Any sequence of weakly constant functions has a propositional colimit!
- * Rijke van Doorn / Buchholtz Rijke, wip: localizations and related constructions

Thank you! Any comments or questions?