Non-Recursive Truncations

Nicolai Kraus

University of Nottingham

TYPES, Novi Sad
25 May 2016

Truncation

$\exists(x: A), P(x) \quad$ is not the same as $\quad \Sigma(x: A), P(x)$!
$:=\|\Sigma(x: A), P(x)\|$
Explanation: The [propositional] truncation \|-\| makes a type propositional (all elements equal).

HoTT 2013; see also NuPRL 1986, Awodey-Bauer 2004.

$$
\text { Rules for }\|-\|
$$

$\|A\|$ is propositional

$$
\xlongequal[A \rightarrow B]{\|A\| \rightarrow B}
$$

$A \rightarrow\|A\|$
if B is propositional

But then, what is $\|A\| \rightarrow B$?

$\|A\| \rightarrow B$ is equivalent to \ldots

$$
\begin{array}{ll}
\Sigma(f: A \rightarrow B), & \text { if } B \text { is }(-1) \text {-type } \\
\Sigma\left(c: \text { woonst }_{f}\right), & \text { if } B \text { is 0-type } \\
\Sigma\left(d: \operatorname{coh}_{f, c}\right), & \text { if } B \text { is 1-type }
\end{array}
$$

general B : infinitely many components!
note: \quad wconst $_{f}: \equiv \Pi_{x, y: A} f x=f y$

$$
\operatorname{coh}_{f, c}: \equiv \Pi_{x, y, z: A} c(x, y) \cdot c(y, z)=c(x, z)
$$

$\|A\| \rightarrow B$ for general B

Theorem [K., TYPES 2014 proceedings]
We can define Reedy fibrant $\mathcal{T A}$ and $\mathcal{E B}: \Delta_{+}^{\mathrm{op}} \rightarrow$ Type such that:

$$
(\|A\| \rightarrow B) \simeq \text { nat. trans. from } \mathcal{T A} \text { to } \mathcal{E} B
$$

in any type theory with $\mathbf{1}, \Sigma, \Pi$, Id, fun.ext., $\|-\|$, Reedy ω^{op}-limits.

This (directly or indirectly) generalises

* Lurie, Higher Topos Theory, Prop. 6.2.3.4: ∞-semitopos instead of Type
* Rezk, Toposes and Homotopy Toposes, Prop. 7.8: model topos instead of Type

Truncation as a Higher Inductive Type

$\|A\|$ as HIT
(standard construction)
$1^{\text {st }}$ approximation: A_{1}

$$
f: A \rightarrow A_{1}
$$

$3^{\text {rd }}$ approximation: A_{3}

$$
\begin{aligned}
& f: A \rightarrow A_{3} \\
& c: \text { wconst }_{f} \\
& d: \operatorname{coh}_{f, c}
\end{aligned}
$$

Can we give an equivalent definition of $\|A\|$ with a nicer elimination principle?
$2^{\text {nd }}$ approximation: A_{2} $f: A \rightarrow A_{2}$
$c:$ wconst $_{f}$

$$
\|A\| \simeq\left\|A_{1}\right\|_{0} \simeq\left\|A_{2}\right\|_{1} \simeq \ldots
$$

Easier elimination principle into 0 -, or 1 -, or ...-types!

Purely non-recursive representations, I

We could try to consider the homotopy colimit of

$$
A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \ldots
$$

which should be $\|A\|$.
Problem: for any n, we can write down A_{n}. However, we cannot write down $A: \mathbb{N} \rightarrow \mathcal{U}$.
("Semisimplicial Types Phenomenon")

Purely non-recursive representations, II

Solution: Make the sequence $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \ldots$ "coarser".

* van Doorn (CPP'16), independent of my analysis: do the first approximation in every step
(easy to prove correct, but no finite special cases).
* K. (LiCS'16): construct A_{n+1} by taking A_{n} and adding fillers for $S^{n-1} \rightarrow A_{n}$
(harder to prove correct, but useful finite special cases);
Any sequence of weakly constant functions has a propositional colimit!
* Rijke - van Doorn / Buchholtz - Rijke, wip: localizations and related constructions

Thank you! Any comments or questions?

