Connecting Constructive Notions of Ordinals in Homotopy Type Theory

Nicolai Kraus Fredrik Nordvall Forsberg Chuangjie Xu

MFCS 2021, August 23-27, Tallinn/online hybrid

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& \hline 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \\
& \omega^{2}, \ldots, \\
& \omega^{\omega}, \quad \ldots, \quad \varepsilon_{0}=\omega^{\omega^{\omega}}, 3+\omega \cdot
\end{aligned}
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \begin{array}{llll}
\omega, & \omega+1, & \omega+2, & \ldots \\
\omega \cdot 2, & \omega \cdot 2+1, \ldots, & \omega^{2}, \ldots, & \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
\omega^{\omega}, \quad \ldots, & \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, & \ldots, & \varepsilon_{17},
\end{array} \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \quad \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \\
& \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \quad \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \quad \ldots
\end{aligned}
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \quad \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

Another answer: Sets with an order $<$ which is

- transitive: $\quad(a<b) \rightarrow(b<c) \rightarrow(a<c)$
- wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

Another answer: Sets with an order $<$ which is
transitive: $\quad(a<b) \rightarrow(b<c) \rightarrow(a<c)$

- wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \quad \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

Another answer: Sets with an order $<$ which is

- transitive: $\quad(a<b) \rightarrow(b<c) \rightarrow(a<c)$
wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

Another answer: Sets with an order < which is

- transitive: $\quad(a<b) \rightarrow(b<c) \rightarrow(a<c)$
- wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \ldots, \quad \omega^{2}, \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13, \quad \ldots, \\
& \omega^{\omega}, \ldots, \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \ldots, \quad \omega_{1}, \ldots
\end{aligned}
$$

Another answer: Sets with an order < which is

- transitive: $\quad(a<b) \rightarrow(b<c) \rightarrow(a<c)$
- wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
0, \quad 1, \quad 2, \quad 3, \ldots, \omega, \omega+1, \omega+2 \text {, }
$$

$$
\omega \cdot 2, \quad \omega \cdot 2 \quad \text { What are ordinals good for? }
$$

$$
\omega^{\omega}, \ldots, \varepsilon
$$

Another answer:

- transitive:
- wellfounder
- and trichots
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

What are ordinals?

One answer: Numbers for counting/ordering:

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \quad \ldots, \quad \omega, \quad \omega+1, \quad \omega+2, \quad \ldots \\
& \omega \cdot 2, \quad \omega \cdot 2+1, \quad \ldots, \quad \omega^{2}, \quad \ldots, \quad \omega^{2} \cdot 3+\omega \cdot 7+13 \\
& \omega^{\omega}, \quad \ldots, \quad \varepsilon_{0}=\omega^{\omega^{\omega \cdots}}, \quad \ldots, \quad \varepsilon_{17}, \quad \ldots, \quad \omega_{1}, \quad \ldots
\end{aligned}
$$

Another answer: Sets with an order $<$ which is

- transitive:

$$
(a<b) \rightarrow(b<c) \rightarrow(a<c)
$$

- wellfounded: every sequence $a_{0}>a_{1}>a_{2}>a_{3}>\ldots$ terminates
- and trichotomous: $(a<b) \vee(a=b) \vee(b<a)$
- ... or extensional (instead of trichotomous):

$$
(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c
$$

Ordinals in dependent type theory

\Rightarrow Problem/feature of a constructive setting: different definitions differ! Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!
Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!
Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!
Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!
Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!
Three standard notions of "ordinals" in computer science:

- Cantor normal forms
- Brouwer trees
- Wellfounded \& extensional \& transitive orders

What's the connection? Why can we call them "ordinals"?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) "correct" formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

What do we expect of "ordinals"? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?

(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.

What do we expect of "ordinals"? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?

(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)

What do we expect of "ordinals"?

 When does $(\mathcal{O},<)$ deserve to be called "ordinals'?(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$

What do we expect of "ordinals'?

 When does $(\mathcal{O},<)$ deserve to be called "ordinals'?(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$ not

What do we expect of "ordinals"?

 When does $(\mathcal{O},<)$ deserve to be called "ordinals"?(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$
(d) Extensionality: $(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c$

What do we expect of "ordinals"? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?
(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$
(d) Extensionality: $(\forall a \cdot a<b \leftrightarrow a<c) \rightarrow b=c$
(e) Suprema/limits: Given a sequence, we can calculate its limit.

What do we expect of "ordinals"? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?
(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$
(d) Extensionality: $(\forall a \cdot a<b \leftrightarrow a<c) \rightarrow b=c$
(e) Suprema/limits: Given a sequence, we can calculate its limit.

What do we expect of "ordinals"? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?
(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$
(d) Extensionality: $(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c$
(e) Suprema/limits: Given a sequence, we can calculate its limit.
(f) Classifiability: If $x: \mathcal{O}$, then x is a zero, a successor, or a limit.

What do we expect of "ordinals'? When does $(\mathcal{O},<)$ deserve to be called "ordinals"?
(a) Wellfoundedness: Every decreasing sequence terminates / can do transfinite induction.
(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean?)
(c) Trichotomy: $(a<b) \vee(a=b) \vee(b<a)$
(d) Extensionality: $(\forall a . a<b \leftrightarrow a<c) \rightarrow b=c$
(e) Suprema/limits: Given a sequence, we can calculate its limit.
(f) Classifiability: If $x: \mathcal{O}$, then x is a zero, a successor, or a limit.

Cantor normal forms

Motivation: $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}$ with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$

Cantor normal forms
Motivation: $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}$ with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$

Let \mathcal{T} be the type of unlabeled binary trees:

$$
\begin{array}{ll}
0 \\
\omega^{-}+-: & : \mathcal{T} \tag{1}\\
\mathcal{T}
\end{array} \quad \alpha=\mathcal{T} \rightarrow \mathcal{T} \quad \beta_{1}
$$

Cantor normal forms

Motivation: $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}$ with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$

Let \mathcal{T} be the type of unlabeled binary trees:

$$
\begin{gathered}
\begin{array}{c}
0 \\
\omega^{-}+-: \mathcal{T} \\
\text { A tree is a Cantor normal form if } \beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n} \text { (lexicographical order). }
\end{array} .\left\{\begin{array}{l}
\beta_{1}
\end{array}\right)
\end{gathered}
$$

Cantor normal forms

Motivation: $\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\cdots+\omega^{\beta_{n}}$ with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$

Let \mathcal{T} be the type of unlabeled binary trees:

$$
\begin{array}{ll}
0 \\
\omega^{-}+-: & : \mathcal{T} \\
\mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathcal{T}
\end{array} \quad \alpha=\beta_{1}^{\beta_{1}} \beta_{2}^{\beta_{2}}
$$

A tree is a Cantor normal form if $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$ (lexicographical order).

Cannot calculate limits of sequences, but everything else works - including continuity of arithmetic operations!

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type \mathcal{O} of Brouwer trees?

$$
\text { zero : } \mathcal{O} \quad \text { succ : } \mathcal{O} \rightarrow \mathcal{O} \quad \text { sup : }(\mathbb{N} \rightarrow \mathcal{O}) \rightarrow \mathcal{O}
$$

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type \mathcal{O} of Brouwer trees?

$$
\text { zero : } \mathcal{O} \quad \text { succ : } \mathcal{O} \rightarrow \mathcal{O} \quad \text { sup : }(\mathbb{N} \rightarrow \mathcal{O}) \rightarrow \mathcal{O}
$$

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type \mathcal{O} of Brouwer trees?

$$
\text { zero : } \mathcal{O} \quad \text { succ : } \mathcal{O} \rightarrow \mathcal{O} \quad \text { sup : }(\mathbb{N} \rightarrow \mathcal{O}) \rightarrow \mathcal{O}
$$

Problem: $\quad \sup (0,1,2,3, \ldots) \neq \sup (1,2,3, \ldots)$
How to fix this without losing wellfoundedness, validity of arithmetic operations, and so on?

Brouwer trees quotient inductive-inductively

```
data Brw where
    zero : Brw
    succ : Brw \(\rightarrow\) Brw
    limit : \((f: \mathbb{N} \rightarrow B r w) \rightarrow\{f \uparrow:\) increasing \(f\} \rightarrow B r w\)
    bisim : \(\forall \mathrm{f}\{\mathrm{ff}\} \mathrm{g}\{\mathrm{g} \uparrow\} \rightarrow\)
            \(f \approx g \rightarrow\)
    limit \(f\{f \uparrow\} \equiv\) limit \(g\{g \uparrow\}\)
    trunc : isSet Brw
data \(\leq\) where
    s-zērō : \(\forall\{x\} \rightarrow\) zero \(\leq x\)
    \(\leq\)-trans : \(\forall\{x y z\} \rightarrow x \leq y \rightarrow y \leq z \rightarrow x \leq z\)
    \(\leq\) succ-mono : \(\forall\{x y\} \rightarrow x \leq y \rightarrow \operatorname{succ} x \leq \operatorname{succ} y\)
    s-cocone : \(\forall\{x\} f(f \uparrow k\} \rightarrow(x \leq f k) \rightarrow(x \leq l i m i t f f\{f\})\)
    \(\leq-l i m i t i n g: ~ \forall f(f \uparrow x\} \rightarrow((k: \mathbb{N}) \rightarrow f(k \leq x) \rightarrow \operatorname{limit} f\{f \uparrow\} \leq x\)
    \(\leq-\) trunc : \(\forall\{x y\} \rightarrow\) isProp \((x \leq y)\)
                                    (cubical Agda)
```


Brouwer trees quotient inductive-inductively

```
    data Brw where
# zero : Brw 
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {g^} ->
            f =g }
            limit f {ft} \equiv limit g {g^}
    trunc : isSet Brw
    data _\leq_where
    s-z\overline{ero}
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> X \leq y -> succ x s succ y
    s-cocone : \forall {x} f {f\uparrow k} -> (x \leq f k) -> (x \leq limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) -> f k \leq x ) -> limit f {f\uparrow} \leq x
    s-trunc : \forall {x y} -> isProp (x \leq y)
```


Brouwer trees quotient inductive-inductively

```
data Brw where
    zero : Brw
gucc : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {g^} ->
            f \approxg }
        limit f {ft} \equiv limit g {gt}
    trunc : isSet Brw
data \leq_where
    s-z\overline{ero}
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> x \leq y -> succ x s succ y
    s-cocone : \forall {x} f {f\uparrow k} -> (x \leq f k) -> (x < limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) -> f k \leq x ) -> limit f {f\uparrow}\leqx
    s-trunc : \forall {x y} -> isProp (x m y)
(cubical Agda)
```


Brouwer trees quotient inductive-inductively

```
data Brw where
    zero : Brw
    succ : Brw -> Brw
#limit : (f : \mathbb{N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {gt} ->
            f =g }
        limit f {ft} \equiv limit g {gt}
    trunc : isSet Brw
data \leq_where
    s-zérō : \forall {x} -> zero }\leq
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> x \leq y -> succ x s succ y
    s-cocone : \forall {x} f {ft k} -> (x \leq f k) -> (x < limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) -> f k \leq x ) -> limit f {f\uparrow}\leqx
    s-trunc : \forall {x y} -> isProp (x m y)
                                    (cubical Agda)
```


Brouwer trees quotient inductive-inductively

```
data Brw where
    zero : Brw
    succ : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
```



```
\\bisim : \forallf | {f\uparrow} g {g\uparrow}->
data \leq_where
    s-z\overline{ero}\quad: \forall {x} -> zero \leqx
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> x \leq y -> succ x s succ y
    s-cocone : \forall {x} f {ft k} -> (x \leq f k) -> (x < limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) ->f k \leq x ) -> limit f {f\uparrow}\leqx
    s-trunc : \forall {x y} -> isProp (x m y)
                                    (cubical Agda)
```


Brouwer trees quotient inductive-inductively

```
data Brw where
    zero : Brw
    succ : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {gt} ->
            f \approxg }
            limit f {ft} \equiv limit g {gt}
Ftrunc : isSet Brw
data \leq_where
    s-z\overline{ero}
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> x \leq y -> succ x s succ y
    s-cocone : \forall {x} f {ft k} -> (x \leq f k) -> (x < limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) ->f k \leq x ) -> limit f {f\uparrow}\leqx
    s-trunc : \forall {x y} -> isProp (x m y)
                                    (cubical Agda)
```


Brouwer trees quotient inductive-inductively

data Brw where

```
zero : Brw
    succ : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {g\uparrow} ->
            f \approxg }
        limit f {ft} \equiv limit g {g^}
    trunc : isSet Brw
                                    (cubical Agda)
```

```
=> data s where.
    s-z\overline{erō }:|{x} -> zero \leqx
    s-trans : \forall {x y z} }->\textrm{x}\leq\textrm{y}->\textrm{y}\leq\textrm{z}->\textrm{x}\leq\textrm{z
    s-succ-mono : \forall {x y} -> x \leq y -> succ x s succ y
    s-cocone : \forall {x} f {f\uparrow k} -> (x \leq f k) -> (x \leq limit f {ft})
    <-limiting : \forall f {f\uparrow x} ->((k : N ) ->f k \leq x ) -> limit f {f\uparrow}\leqx
    s-trunc : \forall {x y} -> isProp (x m y)
```


Brouwer trees quotient inductive-inductively

data Brw where

```
zero : Brw
    succ : Brw -> Brw
    limit : (f : N }->\mathrm{ Brw) }->{f\uparrow : increasing f} -> Brw
    bisim : \forall f {ft} g {gt} ->
        f \approxg }
        limit f {f\uparrow} \equiv limit g {g^}
    trunc : isSet Brw
```

data _s_ where
s-zero $\quad: \forall\{x\} \rightarrow$ zero $\leq x$
s-trans : $\forall\{x y z\} \rightarrow x \leq y \rightarrow y \leq z \rightarrow x \leq z$
$\leq-s u c c-m o n o: ~ \forall\{x y\} \rightarrow x \leq y \rightarrow \operatorname{succ} x \leq \operatorname{succ} y$
s-cocone : $\forall\{x\} f(f \uparrow k\} \rightarrow(x \leq f k) \rightarrow(x \leq l i m i t f(f \uparrow\})$
$\leq-l i m i t i n g: ~ \forall f(f \uparrow x\} \rightarrow((k: \mathbb{N}) \rightarrow f(k \leq x) \rightarrow$ limit $f\{f \uparrow\} \leq x$
$\leq-$ trunc $\quad: \forall\{x \mathrm{y}\} \rightarrow$ isProp $(\mathrm{x} \leq \mathrm{y})$

Not trichotomous ($a<b$ undecidable), everything else works - notably wellfoundedness and arithmetic.

Brouwer trees quotient inductive-inductively

data Brw where

$$
\begin{aligned}
& \text { zero : Brw } \\
& \text { succ : Brw } \rightarrow \text { Brw } \\
& \text { limit : }(f: \mathbb{N} \rightarrow B r w) \rightarrow\{f \uparrow: \text { increasing } f\} \rightarrow B r w \\
& \text { bisim : } \forall \mathrm{f}\{\mathrm{f} \uparrow\} \mathrm{g}\{\mathrm{~g} \uparrow\} \rightarrow \\
& f \approx g \rightarrow \\
& \text { limit f \{ft\} } \equiv \text { limit g }\{\mathrm{g} \uparrow\} \\
& \text { trunc : isSet Brw } \\
& \text { data _s_ where }
\end{aligned}
$$

Not trichotomous ($a<b$ undecidable), everything else works - notably wellfoundedness and arithmetic.

Extensional wellfounded orders

Definition of type Ord:
Pairs ($X:$ Type, $\prec: X \rightarrow X \rightarrow$ Prop) such that \prec is transitive, extensional, wellfounded.
$\left(X, \prec_{X}\right) \leq\left(Y, \prec_{Y}\right)$ is given by:
A monotone function $f: X \rightarrow Y$
such that: if $y \prec_{Y} f x$, then there is $x_{0} \prec_{X} x$ such that $f x_{0}=y$.

Extensional wellfounded orders

Definition of type Ord:
Pairs (X : Type, $\prec: X \rightarrow X \rightarrow$ Prop) such that \prec is transitive, extensional, wellfounded.
$\left(X, \prec_{X}\right) \leq\left(Y, \prec_{Y}\right)$ is given by:
A monotone function $f: X \rightarrow Y$ such that: if $y \prec_{Y} f x$, then there is $x_{0} \prec_{X} x$ such that $f x_{0}=y$.

Extensional wellfounded orders

Definition of type Ord:
Pairs ($X:$ Type, $\prec: X \rightarrow X \rightarrow$ Prop) such that \prec is transitive, extensional, wellfounded.
$\left(X, \prec_{X}\right) \leq\left(Y, \prec_{Y}\right)$ is given by:
A monotone function $f: X \rightarrow Y$ such that: if $y \prec_{Y} f x$, then there is $x_{0} \prec_{X} x$ such that $f x_{0}=y$.
(Ord,$<$) is extensional and wellfounded, we has addition and multiplication, we can calculate limits.

Extensional wellfounded orders

Definition of type Ord:
Pairs (X : Type, $\prec: X \rightarrow X \rightarrow$ Prop) such that \prec is transitive, extensional, wellfounded.
$\left(X, \prec_{X}\right) \leq\left(Y, \prec_{Y}\right)$ is given by:
A monotone function $f: X \rightarrow Y$ such that: if $y \prec_{Y} f x$, then there is $x_{0} \prec_{X} x$ such that $f x_{0}=y$.
(Ord, $<$) is extensional and wellfounded, we has addition and multiplication, we can calculate limits.

Unsurprisingly, nothing is decidable. E.g. deciding whether x : Ord is a successor implies LEM (in the HoTT sense).

Connections between the notions

- injective
- preserves and reflects $<, \leq$
- commutes with $+, *, \omega^{x}$
- bounded (by ϵ_{0})
- injective
- preserves $<, \leq$
- over-approximates,$+ *$: $\mathrm{BtoO}(x+y) \geq \mathrm{BtoO}(x)+\mathrm{BtoO}(y)$
- commutes with limits (but not successors)
- BtoO is a simulation \Rightarrow WLPO
- $\mathrm{LEM} \Rightarrow \mathrm{BtoO}$ is a simulation
- bounded (by Brw)

Connections between the notions

- injective
- preserves and reflects $<, \leq$
- commutes with $+, *, \omega^{x}$
- bounded (by ϵ_{0})
- injective
- preserves $<, \leq$
- over-approximates,$+ *$: $\mathrm{BtoO}(x+y) \geq \mathrm{BtoO}(x)+\mathrm{BtoO}(y)$
- commutes with limits (but not successors)
- BtoO is a simulation \Rightarrow WLPO
- $\mathrm{LEM} \Rightarrow \mathrm{BtoO}$ is a simulation
- bounded (by Brw)

Connections between the notions

- injective
- preserves and reflects $<, \leq$
- commutes with $+, *, \omega^{x}$
- bounded (by ϵ_{0})
- injective
- preserves $<, \leq$
- over-approximates,$+ *$: $\mathrm{BtoO}(x+y) \geq \mathrm{BtoO}(x)+\mathrm{BtoO}(y)$
- commutes with limits (but not successors)
- BtoO is a simulation \Rightarrow WLPO
- $\mathrm{LEM} \Rightarrow \mathrm{BtoO}$ is a simulation
- bounded (by Brw)

Connections between the notions

- injective
- preserves and reflects $<, \leq$
- commutes with $+, *, \omega^{x}$
- bounded (by ϵ_{0})
- injective
- preserves $<, \leq$
- over-approximates,$+ *$: $\mathrm{BtoO}(x+y) \geq \mathrm{BtoO}(x)+\mathrm{BtoO}(y)$
- commutes with limits (but not successors)
- BtoO is a simulation \Rightarrow WLPO
- $\mathrm{LEM} \Rightarrow \mathrm{BtoO}$ is a simulation
- bounded (by Brw)

Connections between the notions

- injective
- preserves and reflects $<, \leq$
- commutes with $+, *, \omega^{x}$
- bounded (by ϵ_{0})
- injective
- preserves $<, \leq$
- over-approximates,$+ *$: $\mathrm{BtoO}(x+y) \geq \mathrm{BtoO}(x)+\mathrm{BtoO}(y)$
- commutes with limits (but not successors)
- BtoO is a simulation \Rightarrow WLPO
- $\mathrm{LEM} \Rightarrow \mathrm{BtoO}$ is a simulation
- bounded (by Brw)

