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Abstract

We give an introduction to higher dimensional or homotopy type
theory, trying to provide a comprehensive overview on this research
direction that combines type theory, algebraic topology and higher
category theory. Further, we describe the content and results of own
research projects and outline our future work plan.

This report presents some of the topics the author has worked on
during the first year as a PhD student.



Preface

During my first year, I have spent a lot of time learning the concepts of my
PhD topic, Higher Dimensional Type Theory or Homotopy Type Theory.
The first part of my report is therefore an introduction to this fairly new
field in between of mathematics and theoretical computer science. The foun-
dations for this subject were, in some way, laid by an article of Hofmann and
Streicher [22] 1 by showing that in Intentional Type Theory, it is reasonable
to consider different proofs of the same identity. Their strategy was to use
groupoids for an interpretation of type theory. Pushing this idea forward,
Lumsdaine [28] and van den Berg & Garner [12] noticed independently that
a type bears the structure of a weak omega groupoid, a structure that is
well-known in algebraic topology.

In recent years, Voevodsky proposed his Univalence axiom, basically
aiming to ensure nice properties that traditional mathemticians use regulary,
such as the ability to treat isomorphic structures as equal. Claiming that
set theory has inherent disadvantages, he started to develop his Univalent
Foundations of Mathematics, drawing a notable amount of attention from
researchers in many different fields: homotopy theory, constructive logic,
type theory and higher dimensional category theory, to mention the most
important.

Note that there exists an extended version of this report2. While the
extended version is fairly comprehensive, the version at hand is rather short
and does not provide an introduction to the basic intuition and to a couple
of concepts that are either well-known or too advanced and therefore not
strictly necessary for this report. Moreover, the extended version contains
descriptions of other, rather unrelated research projects I have worked on
and results I have obtained, as well as a couple of other research ideas for
the future.

Acknowledgements. First of all, I would like to thank my supervisor
Thorsten Altenkirch for all the help, explanations, advice and research sug-
gestions. I am especially thankful for the freedom to always work on what I
am most interested in, combined with the support he offers whenever I need
it.
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Programming Laboratory for the very enjoyable atmosphere in general.

1this is not the original one, but an improved version
2it can be found on my homepage, http://red.cs.nott.ac.uk/~ngk/
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1 Overview

The sections 2 to 7 of this report are a significantly abridged version of an
exposition I am writing3. Originally, my motivation for writing up these
contents has been to teach them to myself. At the same time, I had to
notice that no detailed written introduction seems to exist, maybe due to
the fact that the research branch is fairly new.

Concretely, in section 2, I introduce weak factorisation systems. I dis-
cuss in which way they can, refining the model described by Seely [38], be
used to model dependently typed theories. This is based on work of many
recent publications, including [7], [8], [10], [11] and [24]. An introduction to
model categories is given in section 3. One example of a model category is
the category of small groupoids. It was used by Hofmann & Streicher [22]
to show that uniqueness of identity proofs is not implied by J (Section 4.2).
Another model category is the one of simplicial sets, which plays a very
central role in Voevodsky’s model of type theory. We introduce it in Section
8. Section 9 deals with the notion of contractibility, homotopy levels, weak
equivalences, univalence and concludes with a proof that univalence implies
function extensionality. In Section 10, a proof of Hedberg’s theorem is pre-
sented. Finally, in section 8, my own work on what I call Yoneda Groupoids
is described and finally (section 9), some future research ideas are outlined.

2 Homotopic Models

The main sources for this section are van den Berg & Garner [11], Arndt &
Kapulkin [7] and Awodey & Warren [10]. For some concepts, the nlab [41]
is very useful.

2.1 Weak Factorization Systems

Weak factorization systems provide a useful setting for models of identity
types. As described in the section about semantics, the critical point is
to find a suitable subclass of morphisms that have the properties of types,
and weak factorization system address exactly at this issue. It also works
the other way round: As shown by Gambino & Garner [18], the classifying
category of a type theory with identity types admits always a (nontrivial)
weak factorization system.

We use the definitions stated in [32]. The concepts are well-known and
wildly accepted, but to the best of my own knowledge, they are originally
due to Bousfield [13].

3it can be found on my homepage, http://red.cs.nott.ac.uk/~ngk/
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It will turn out later that a basic requirement for identity types is the
following lifting property.

Definition 2.1 (Lifting Property). Let c, f be morphisms in a category. c
has the left lifting property with respect to f (equivalently, f has the right
lifting property with respect to c) if, for any commutative square

A //

c

��

X

f
��

B // Y

a diagonal filler, i.e. a morphism j : B → X, exists, making the whole
diagram commutative. This filler does not have to be unique (though this
would be a useful property later).

Having this concept in hand, we are able to define the mentioned systems:

Definition 2.2 (weak factorization system). Given a category C, a weak
factorization system on C is a pair (L,R) of sets of morphisms of C such
that

(W1) every morphism in C can be written as p ◦ i, where p ∈ R, i ∈ L (not
necessarily unique)

(W2) every morphism in L has the left lifting property with respect to every
morphism in R

(W3) L and R are maximal with this property (i.e. we cannot add any
morphisms without violating the above requirements)

Example 2.3. A basic (but nonconstructive) example of a weak factoriza-
tion system on the category of sets is (monos, epis), i.e. the set of injective
(monomorphisms) and surjective maps (epimorphisms). The factorization
of f : A→ B is given by

A
f //

a7→(in1a,f(a)) %%K
K

K
K

K B

(1 +A)×B
(a,b) 7→b

99s
s

s
s

s

Note that the somewhat nasty 1+ is necessary as there would be a problem if
A = ∅ 6= B otherwise. For the lifting j, given an injective c and a surjective
f in

A
u //

c

��

X

f
��

B v
// Y
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define j(b) = u(a) if a = c(a) and, if such an a does not exist, j(b) = x for
some x that satisfies f(x) = v(b). Note that this is possible if and only if
the Axiom of Choice holds true. Finally, the maximality condition is clearly
satisfied.

This can also be done in a constructive way by requiring that all the
monos and epis are split (and carry information about the corresponding
retraction resp. section), thus essentially making a (deterministic) construc-
tion of the diagonal filler possible.

As an easy exercise and because it is important for further explanations,
we prove the following:

Lemma 2.4. Given a weak factorization system (L,R), the class R is closed
under pullbacks (whenever they exist).

Proof. Let f : B → A ∈ R and σ : X → A any morphism. Then, for
Y = X ×A B, we have to show that in the pullback square

Y
τ //

g

��

B

f
��

X σ
// A

the morphism g is in R. Therefore, let c : S → T ∈ L be any morphism and
s : S → Y , t : T → X be morphisms that make the left square and therefore
the whole diagram commute:

S
s //

c

��

Y
τ //

g

��

B

f

��
T

t
// X σ

// A

As f ∈ R, there exists a diagonal filler:

S
s //

c

��

Y
τ // B

f

��
T

t
//

i

77nnnnnnnn
X σ

// A

Together with the pair (i, t), the property of the pullback guarantees that
there is a morphism j:

S
s //

c

��

Y

g

��

τ // B

f

��
T

t
//

j
>>

X σ
// A
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By our construction, we have g ◦ j = t, so the only thing to check is whether
s equals j ◦ c. We know that g ◦ s = g ◦ j ◦ c and that τ ◦ s = i ◦ c = τ ◦ j ◦ c,
so the pairs (τ ◦ s, g ◦ s) and (τ ◦ j ◦ c, g ◦ j ◦ c) are equal. Because of the
pullback property, each of the two pairs provides a unique morphism S → Y
making everything commutative, but for the first pair, this is obviously s
and for the second pair, this is j ◦ c. Consequently, they are equal and we
are done.

The above lemma enables us to interpret substitution of types as pull-
backs, as described in the section about semantics of dependent type theory
in the extended version of this report.

2.2 Identity types in Weak Factorization Systems

I have learnt the content of this subsection by reading the (highly recom-
mended) survey article [8]. Unfortunately, it is not very detailed, so I try to
give a slightly longer explanation.

From now on, let us write AI as short-hand for Σa,b:A.IdA a b. Clearly, if
A is a type in context Γ, then so is AI4.

So, let us now discuss the interpretation of identity types. Given a bi-
cartesian closed categoriy C with a weak factorization system (L,R), assume
we have interpreted everything apart from identity types as described in the
semantics section. If Γ ` A : type, then there is the context morphism
δA : Γ.A → Γ.A.A. In C, the morphism JδKA can, according to the laws of
a weak factorization system, be written as

JδAK = JΓ.AK c∈L−−→ X
f∈R−−−→ JΓ.A.AK.

Assume we have a possibility to choose one of the (possible multiple) factor-
izations in a coherent way. Then, we can choose to model Γ.AI by X, and
c will be the interpretation of λa . (a, a, refla), while f is the interpretation
of the equality type (that depends on Γ.A.A).

For an easier notation, let us write rA instead of λa : A . (a, a, refla).

The property of the weak factorization system makes sure that we can
interpret the eliminator. Consider a type P that depends on AI in context Γ
and assume we have a term m of type ∀a.P (a, a, refla) as in the commutative

4This is usually the notation for the path object in abstract homotopy theory of model
categories; this coincidence is, of course, not random!
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diagram

JΓ.AK
JmK //

JrAK

��

JΓ.AI .P K

JP K

��
JΓ.AIK 1 // JΓ.AIK

This diagram represents exactly the assumptions of the J rule. We know
that the left and the right morphism are in L resp. in R. Therefore, the
properties of the weak factorization system guarantee the existence of a
morphism j making the diagram commutative:

JΓ.AK
JmK //

JrAK

��

JΓ.AI .P K

JP K

��
JΓ.AIK 1 //

j

;;wwwwwwwwwwwwwwwwwww
JΓ.AIK

If we have a coherent possibility to choose the filler j, we can use it
as the interpretation of the elimination rule. Note that the upper triangle
represents the computation rule, stating j ◦ JrAK = JmK.

2.3 Homotopy Theoretic Models of Identity Types

Let us state the above discussion in form of a theorem. Is is due to Awodey &
Warren [10] and makes use of some abstract homotopy theory (in particular,
path objects, which we do not repeat here; a good source is [15]):

Theorem 2.5. Let C be a finitely complete category with a weak factor-
ization system and a functorial choice (·)I of path objects in C, and all of
its slices, which is stable under substitution. I.e., given any A → Γ and
σ : Γ′ → Γ,

σ∗(AI) ∼= (σ∗A)I .

Then C is a model of a form of Martin-Löf type theory with identity types.

Note that AI is now defined in both the cases that A is a type and that
A is an object in a category, which will hopefully not lead to confusion. The
intuition is that the former should be modelled by the latter.
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Here is a diagram that illustrates the theorem. Given an f ∈ R and a
morphism σ, which are painted as solid arrows, we can construct the pull-
backs (dashed arrows) and factorizations of the diagonals (dotted arrows):

σ∗A×Γ′ σ
∗A

(σ∗A)I

gg

σ∗A

rσ∗A
ee

//_______

���
�
�
�
�
�
� Γ′

σ

��

σ∗(AI)

22eeeeeeeeeeeeeeeeeeeee

��0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

A
f // Γ

A×Γ A

OO�
�
�
�
�
�

//______ A

f

OO

AI

99

A

rA

77

As shown in the diagram, σ∗(AI) and (σ∗A)I have to be isomorphic in
order to fulfil the assumptions of the theorem.

The proof given in [10] is basically a summary of our explanations in the
previous sections.

Remark 2.6. At first sight, one might wonder if the choices of j in Awodey
& Warren’s theorem have to fulfil some coherence conditions. The authors
do not mention any, but personally, I am still not completely sure about
this.

3 Model Categories

In this section, we want to provide some background on model categories, a
structure that can be found in many mathematical constructions and has two
weak factorization systems built-in. They were first mentioned by Quillen
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[36]. Many authors ([7], [8], [10], [11], [24], [27]) make use of model cate-
gories, but in fact, one of the two weak factorization systems is never used.
However, if something has the structure of a weak factorization system, it
nearly always is a model category as well, so not much harm is done if the
stronger notion is assumed. The advantage is that model categories are a
well-established concept in mathematics.

We first state the definition given in the nlab [31]:

Definition 3.1 (Model Category). A model structure on a category C con-
sists of three distinguished classes of morphisms of C, namely the cofibra-
tions C, the fibrations F and the weak equivalences W, satisfying:

(M1) 2-out-of-3 : If, for any two composable morphisms f , g, two of the
three morphisms f, g, g ◦ f are weak equivalences, then so is the third.

(M2) there are two weak factorization systems, (C,W ∩ F) and (C ∩W,F).

A model category is a complete (all small limits exist) and cocomplete (all
small colimits exist) category that carries a model structure.

Like most authors, we call a map that is a fibration and a weak equiv-
alence at the same time an acyclic fibration (not that trivial fibration is
also common), similarly, a cofibration that is a weak equivalence is called
an acyclic cofibration. If A → 1 is a fibration, then the object A is called
fibrant. If 0→ B is a cofibration, B is called cofibrant.

We allow us to make three comments here, all of which are well-known
and are, for example, stated in [29].

Example 3.2. For any category C, let two of the three classes F,C,W be
the class of all morphisms and let the third be the class of all isomorphisms.
This gives us three different model structures on C. If C has all small limits
and colimits, each of these constructions forms a model category.

Example 3.3. The product of model categories is, in the obvious way, a
model category.

Remark 3.4. The concept of a model category is self-dual.

Nontrivial examples include the categories of groupoids, simplicial sets
and topological spaces, which will be discussed later.

As we will need it soon, we want to state the the following proposition
([15] Proposition 3.14):

Proposition 3.5. Let C be a model category. Then the following statements
are true:

7



(i) C is closed under cobase change, i.e. if c is a cofibration in the fol-
lowing pushout diagram, then so is c′:

A

c

��

// C

c′

���
�
�

B //___ D

(ii) W∩C is closed under cobase change, i.e. if c is an acyclic cofibration
in the diagram above, then so is c′.

(iii) F is closed under base change, which is the dual statement of (i), i.e.
the pushout is replaced by a pullback.

(iv) f ∩W is closed under base change.

Proof. The statement (ii) can be proved analogously to (i) and (iii), (iv)
are clearly dual to (i), (ii), so we only prove (i). To prove that c′ in the
given diagram is a cofibration, let f be an acyclic fibration.

A

c

��

// C

c′

���
�
�

u // E

f

��
B s

//___ D
t

// F

As c is a cofibration and f an acyclic fibration, there exists a lifting j :
B → E. Together with u and the pushout property, j implies that there is
a morphism j′ : D → E. While [15] concludes the proof by stating that j′

is the required lifting, the authors do not find it obvious that both triangles
commute.

A

c

��

// C

���
�
�

u // E

f

��
B

j

77

s
//___ D

j′

>>

t
// F

While the commutativity of the upper triangle, i.e. u = j′ ◦ c′ is indeed a
direct consequence of the pullback property, it is less clear that t = f ◦ j′.
However, note that f ◦ j′ ◦ c′ = f ◦ u = t ◦ c′ and f ◦ j′ ◦ s = f ◦ j = t ◦ s do
directly follow from the commutativity of the diagram, where commutativity
of the lower triangle is not assumed. We have therefore shown that the

pairs (C
f◦j′◦c′−−−−→ F,B

f◦j′◦s−−−−→ F ) and (C
t◦c′−−→ F,B

t◦s−−→ F ) are identical,
which means that they induce (by the pushout property) the same unique
morphism D → F , but as those morphisms are f ◦ j′ respective t, those are
equal.

8



We want to state another often used definition, used, for example, in
[15] and [29] (however, both times slightly differently). One thing should be
mentioned before:

Definition 3.6 (Retract). If X,Y are two objects in a category C, we say
that Y is a retract of X if there exists maps Y

s−→ X
r−→ Y with r◦s = idY . If

f, g are maps, we call g a retract of f if this holds true in the arrow category
C→, i.e. if there is a commuting diagram

A

g

��

i1 // W

f

��

p1 // A

g

��
B

i2
// Z p2

// B

satisfying p1 ◦ i1 = idA and p2 ◦ i2 = idB.

Definition 3.7 (Model Category, alternative definition). As above, a model
structure on C consists of three classes C,F,W, so that:

(N1) C,F,W are all closed under composition and include all identity maps

(N2) 2-out-of-three is satisfied as above: If two of f , g, g ◦ f are in W, then
so is the third

(N3) C,F,W are also closed under retracts, i.e. if g is a retract of f and f
is in one of the classes, then g is in the same class

(N4) if c ∈ C and f ∈ F, then c has the left lifting property with respect to
f if at least one of them is also in W

(N5) any morphism m can be factored in two ways:

A
m−→ B = A

c∈C∩W−−−−→ X
f∈F−−→ B = A

c′∈C−−−→ X ′
f ′∈F∩W−−−−−→ B

A model category is a category with all small limits and colimits together
with a model structure.

Remark 3.8. There are a couple of variants to these definitions. For exam-
ple, Dwyer & Spalinski [15] only requires the existence of finite limits and
colimits. Also, Hovey [29] wants the factorizations to be functorial. The
nlab [31] states: “Quillens original definition required only finite limits and
colimits, which are enough for the basic constructions. Colimits of larger
cardinality are sometimes required for the small object argument, however.”

As an exercise, we have proved that each of the above definitions can
be replaced by the other. This fairly involved proof can be found in the
extended version of our report; here, we just state the claim as a proposition:

Proposition 3.9. The definitions 3.1 and 3.7 are equivalent.

9



4 Groupoids

The Groupoid model is the easiest one of those we want to present here. At
the same time, it is the oldest one ([22]) and has inspired the whole research
field of homotopy type theory.

The basic setting is the category Grp with (small) groupoids as objects
and functors as morphisms. More precisely, we are talking about the “evil”
version of Grp, which does not arise as the truncation of the natural 2-
category of groupoids, functors and natural transformations. Instead, the
equality on the hom-sets, i. e. the functors, is strict functor equality: Two
functors F,G : A → B are only equal if F (a) = G(a) and F (m) = G(m)
for every object a and morphism m of the groupoid A, while the “non-evil”
version of the category of groupoids would identify F and G if they are
natural isomorphic.

In category theory, there exist the so-called Grothendieck fibrations [30]
and these are the fibrations we need, as described in [8], though it might be
more appropriate to talk about isofibrations. As both concepts are the same
in the simple case of groupoids, we do not make the distinction. We only
give the definition for groupoids, not the more general one for categories.

Definition 4.1 (Fibrations in Grp). A functor p : E → B between groupoids
is a fibration if for any e ∈ E and f : b→ p(e), there is a morphism g : e′ → e
with p(g) = f . This immediately implies that every groupoid is fibrant.

The definition implies that any connected component of B is either dis-
joint from the image of p or completely objectwise contained in this image.

Groupoids carry the structure of a weak factorization system in the fol-
lowing way:

• L is the class of functors which are injective and equivalences in the
categorical meaning (i. e. embeddings which are injective on objects).

• R are the fibrations defined above.

Theorem 4.2. The structure (C,F) is a weak factorization system on the
category of small groupoids.

Proof. In my original composition, I had a very long and unnecessarily com-
plicated proof here. I have decided to skip it, as there are much more elegant
proofs available, for example at the nlab [16].

We may define AI to be the arrow groupoid A→. Then, refl maps objects
a ∈ |A| canonically on ida ∈ |A→| and morphisms m : a → b on (m,m). It

10



is easy to check that this is indeed an injective equivalence between A and
A→, i.e. a trivial cofibration. Moreover, there is an obvious fibration A→ →
A×Γ A that represents the Identity Type. Summarised, our decomposition
of the diagonal is

A
a7→ida−−−−→ A→

p 7→(dom(p),codom(p))−−−−−−−−−−−−−→ A×A

This model has in some way marked the beginning of the whole develop-
ment. It is due to Martin Hofmann and Thomas Streicher’s work [22], who
used it to answer an important question about the uniqueness of identity
proofs:

Corollary 4.3 (UIP is not provable from J , M. Hofmann and T. Streicher).
Given two terms a, b : A and two proofs p, q : IdA a b, it is not possible to
construct an inhabitant of IdIdA a b p q without using axioms beyond J .

Proof. We use the weak factorization system given above, together with
theorem 2.5. We do not work out the details here. A subtle point is the
question if it is possible to model dependent function spaces, as the category
of small groupoids is not locally cartesian closed. In fact, it is, as shown by
Hofmann & Streicher [22], and Palmgren [34] explains this by discussing
that pullbacks along fibrations have “semi-strict pseudo-adjunctions”.

Remark. It causes regularly some confusion that two objects in AI such

as a
f−→ b and a

g−→ b, are always propositionally equal, since AI = A→ and
the diagram

a
f //

ida

���
�
� b

g◦f−1

���
�
�

a
g // b

is obviously commutative. This should, however, not be too surprising, as
[22] already mentioned that UIP tuple is provable: Any (a, b, p) is equal to
(a, a, refla), the crucial point is that p is not equal to refla.

Remark 4.4. While we have only used that small groupoids form a weak
factorization system, they are even an example of a model category. To
get this structure, take all the functors which are injective on objects as
cofibrations and the usual categorical equivalences as weak equivalences.

5 Simplicial Sets

A simplicial set is a presheaf over the category of (isomorphy classes of)
finite totally ordered nonempty sets and monotone functions. We want to
introduce the most important concepts and provide some intuition.

11



5.1 General introduction to simplicial sets

Our main source for this subsection is Greg Friedman’s article[17]. Another
valuable article is [37] which is somewhat more direct but also discusses
fewer concepts. As simplicial sets play an important role in homology and
related topics, books such as [35], [19] and [29] can also serve as references.
Here, we only give a brief summary. For everything beyond that, we highly
recommend Friedman’s article.

Definition 5.1 (category ∆). For every natural number n > 0, we define
[n] to be the set {0, 1, . . . , n− 1} (equivalently, the finite ordinal). ∆ is the
category that has the [n] as objects and all monotone maps (l ≤ k implies
f(l) ≤ f(k)) as morphisms.

Remark 5.2. Caveat: The literature does not completely agree on the defi-
nition of ∆, but the different definitions are equivalent. It is still necessary
to pay attention to avoid confusion. In particular, [n] is sometimes defined
to be {0, . . . , n} and the condition n > 0 is dropped, thereby shifting every-
thing by 1. However, the empty set is usually never seen as an object of the
category, i. e. ∆ does not have an initial object.

Definition 5.3 (category sSet). sSet is the functor category Set∆op
.

Although the above definition is short and precise, it is sometimes helpful
to use a picture:

Given a simplicial set, i.e. a functor X : ∆op → Set, one can (to some
extend) visualise X[1] as a discrete set of points in the space. X[2] is a
set as well. We can visualise it as a set of directed connections, or lines,
between pairs of points in F [1]. To see how this can be justified, notice that
in ∆, there are two maps from the one-point set [1] to the two-point set [2].
Consequently, in ∆op, there are two maps from [2] to [1]. Applying X on
them, these are exactly the two maps that map every directed connection
on its source respectively its target. Further, in ∆, there is exactly one map
from [2] to [1]. After applying X, this map maps every point x ∈ X[1] on
the trivial connection from x to x. Therefore, the visualisation of only X[1]
and X[2] looks like a directed multigraph with loops. Similarly, an object of
the set X[3] will be the shape of a triangle whose border is already given in
the graph, X[4] can be visualised as a tetrahedron, and so on. In fact, the
image we have described can be seen as the Grothendieck construction

∫
X

(see )

In general, an element of X[n] is called an n-simplex of X. We also call
X[n] the set of n-simplices. By the Yoneda lemma, this set can also be
classified as Set∆op

(∆n, X).

It is handy to introduce a set of generators of the morphisms in ∆:
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Definition 5.4. For i, n with i ≤ n, we write Di for the map [n]→ [n+ 1]
that is defined by

Di(j) =

{
j if j < i

j + 1 otherwise.

Further, again for i < n, there is the map Si : [n+ 1]→ [n], defined by

Si(j) =

{
j if j ≤ i
j − 1 otherwise.

It is easy to see that those two classes of maps generate all the morphisms
in ∆. They are central in the theory of simplicial sets:

Definition 5.5 (face and degeneracy maps). Given a simplicial set X, the
morphism di := X(Di) : X[n + 1] → X[n] is called face map, while si :=
X(Si) : [n]→ [n+ 1] is called degeneracy map.

The reason for these names can again be explained using the visualisa-
tion: di maps an element of X[n+ 1], i.e. an n+ 1-simplex, on its ith face.
This can also be expressed by saying that the ith corner is deleted, which
collapses the rest. For n = 1, we have already seen that this morphism maps
a directed line on one of its endpoints. For n = 2, it maps a triangle on one
of its three faces, for n = 3, a tetrahedron is mapped on one of its four faces,
and so on. Dually, si maps an n-simplex on an n+ 1-simplex by just using
the ith corner twice. In the case of n = 1, we have described s0 above as the
map that maps a 1-simplex on the trivial connection to itself, i.e. a point is
mapped on the degenerated line which has the point as both endpoints.

An n-simplex is therefore called degenerated if it can be written as si(x)
for some n− 1-simplex x, else it is called non-degenerated.

A morphism in sSet is, of course, just a natural transformation between
functors F,G : ∆op → Set. It maps points on points, lines on lines, triangles
on triangles and so on and is therefore easy visualise as well. If we specify
µ[n] for such a natural transformation, all µ[m] with m < n are determined.

There is one type of simplicial sets that can, in some sense, be seen as
the most basic type, often referred to as the standard simplices:

Definition 5.6 (standard simplex ∆n). For any positive integer n, we define
∆n := y[n], where y is the Yoneda embedding y : C → SetC

op
for a locally

small category C. If we spell this out, ∆n is the simplicial set given by the
functor ∆(·, [n]) : ∆op → Set. Its visualised version looks like a (regular)
triangle of dimension n− 1; i.e., ∆1 looks like a single point, ∆2 like a line,
∆3 like a triangle (with its body), ∆4 like a tetrahedron, and so on.

Note that ∆n always has exactly one non-degenerated n-simplex. More
general, for each m, ∆n contains exactly

(
n
m

)
non-degenerated elements as
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any set of m distinct points (elements of ∆n[1]) form the boundary of exactly
one non-degenerated m-simplex. Also note that ∆1 is the terminal object of
sSet. Caveat, again: With the alternative formalization of remark 5.2, ∆0

is the terminal object. Another possible way of dealing with this is defining
∆n to be y[n+ 1].

5.2 Kan fibrations

Basically, a Kan fibration is a simplicial map satisfying a certain lifting
property, which should not be surprising. Again, we recommend [17] and
the articles mentioned above as our main references.

Definition 5.7 (kth horn Λnk). For k < n, the kth horn (denoted by Λnk) of
the simplex ∆n can be defined by the full subcategory that is given by

Λnk [j] := {f : [j]→ [n]|∃i ∈ [n].i 6= k ∧ i 6∈ f [j]}.

Here, we make use of the Yoneda embedding again. Λnk is obtained by
removing the “interior” and the n−1-dimensional boundary piece at position
k. There is therefore an obvious inclusion Λnk ↪→ ∆n.

Definition 5.8 (Kan fibration). Finally, a morphism f : E → B in sSet is
a Kan fibration if, for any (k, n), any commutative diagram of the form

Λnk� _

��

// E

f

��
∆n // B

has a diagonal filler j : ∆n → E.

The idea is the same as for all fibrations: “If we can complete something
in B, then we can also complete it in E”. The fibrant objects, i.e. those
objects E such that E → ∆1 is a Kan fibration, are called Kan complexes.

Note that even such simple examples as ∆n fail to be Kan complexes
(see [17]):

Λ3
0� _

��

07→0,17→1,27→0 // ∆2

1

��
∆n // ∆1

Λ3
0 has the three constant functions as 1-simplices, which we have just called

0, 1, 2 above. It is a good idea to think about the triangle with vertices
labelled 0, 1, 2 and, as it is the 0th horn, without the body and without the
edge between 1 and 2. The given mapping for these constants determines the
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whole simplicial map. ∆2 is, thinking this way, the line with two endpoints,
labelled 0 and 1. The upper morphism works well; however, there is no
diagonal filler because we would have to map the edge between 1 and 2 to
the edge between 1 and 0, but in the wrong way (1 7→ 1, 2 7→ 0), which is
not a morphism in sSet.

5.3 Simplicial sets and spaces

Simplicial sets are used as a completely algebraic model of “nice” topological
spaces. To make the connection clear, we first need to become more serious
of what we have called “visualisation so far:

Definition 5.9 (Realisation of standard simplices). For all n > 0, we denote
by |∆n| the realisation of the standard simplex, that is the topological space
given by

|∆n| := {(x0, x1, . . . , xn ∈ Rn+1|0 ≤ xi ≤ 1,
∑

xi = 1}

This definition is straightforward and well-known. We can use it to define
a functor Top→ sSet:

Definition 5.10 (singular set functor). The singular set functor S : Top→
sSet is given by

SY := Top(|∆n|, Y )

This means, if Y is a space, then SY is the set of “ways how ∆n can be
embedded in Y ”, i.e. the set of all “pictures” of ∆n. Of course, SY is very
large unless Y is discrete.

We now want to be more precise about the notion of realisation, or
“visualisation”. While intuitively easy, it is surprisingly hard to define a
functor that builds a space out of a simplicial set X in a reasonable way.
The definition we state is given in [37]. We choose it as it is compact and at
the same time not (much) more confusing than the “more down-to-earth”
definition given in [17]. Clearly, any set can be viewed as a discrete space, in
particular, X[n] is one. Consider the product of spaces |∆m| ×X[n]. Given
f : [n]→ [m] in ∆, there is a canonical continuous map f∗ : |∆m| ×X[n]→
|∆n| × X[n] doing nothing on X[n] and sending the standard simplex of
dimension m to the one of dimension n. Similarly, there is the map f∗ :
|∆m| ×X[n]→ |∆m| ×X[m]. We now define (where we write

∐
instead of

+ for the coproduct):

Definition 5.11 (geometric realisation functor). The geometric realisation
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functor | · | : sSet→ Top is given by

|X| := colimit

 ∐
f :[n]→[m]

|∆m| ×X[n]
f∗,f∗

⇒
∐
[n]

|∆n| ×X[n]


Note that this is often always written as

∫ n |∆n| ×X[n].5

Intuitively, the realisation functor just does what it is supposed to do:
For every standard simplex occurring in the simplicial set, it constructs
its geometric version. This gives us quite a lot of “pyramids” in every
dimension and we have to make sure that all the face and degeneracy maps
are respected. This is done by taking the colimit.

Theorem 5.12 (| · | a S). The geometric realisation functor is left adjoint
to the singular set functor.

Proof. For an even more general statement see [37].

Especially interesting is that Kan complexes are actually in some way
the same as CW-complexes:

Theorem 5.13. The category of Kan complexes and homotopy classes of
maps between them is equivalent to the category of CW complexes and ho-
motopy classes of continuous maps, where the equivalences are given by | · |
and S.

Proof. See [35], theorem I.11.4.

While Top is quite nice for the intuition (as, for example, described in
the extended version of this report), it is not very well-behaved, which raises
a lot of problems when it comes to the details of an interpretation of type
theory. On the other hand, sSet is a purely combinatorial formulation with
much better properties. The above theorem demonstrates how one should
think, in summary: Work in sSet, but get intuition from Top!

5.4 The model in sSet

Multiple sources (including [8], [10]) explain that there is the following model
structure on sSet:

1. cofibrations are the monomorphisms

2. weak equivalences are the weak homotopy equivalences (see below)

5This is a generalized version of the Grothendieck construction (if I am not mistaken)
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3. fibrations are the Kan fibrations

Therefore, the weak factorization system we should use is

• L = monos ∩ weak equivalences

• R = Kan fibrations

A morphism f : X → Y in sSet is a weak homotopy equivalence iff it
induces isomorphisms on all homotopy groups. For the homotopy groups of
a simplicial set X, there are several equivalent definitions (see [17], section
9), one of them saying that the nth homotopy group is defined to be the nth

homotopy group of the topological space that is obtained by applying the
realisation functor on X. Applying Whitehead’s theorem [45], we should
be able to conclude that a weak homotopy equivalence is just a map that
becomes, after realization, a homotopy equivalence.

Simplicial sets are used by Voevodsky to model univalent type theory
([42], [43], [44]). For a good explanation of the construction (which is un-
fortunately quite involved), we would like to recommend Kapulkin & Lums-
daine & Voevodsky’s [23] or Streicher’s [40].

6 Univalence

We now switch to a different aspect: Instead of discussing model construc-
tions, we examine interesting (possible) properties of identity types.

6.1 Contractibility

Contractibility is, in topology, a well-known property of topological spaces:
A space is called contractible if (and only if) it is homotopically equivalent to
the point. This means, a space X is contractible iff there exists a continuous
map H : X × [0, 1]→ X and a point a ∈ X so that, for all x ∈ X, we have
F (x, 0) = x and F (x, 1) = a; in other words, F is at ”time” 0 the identity
and at ”time” 1 constant.

For a type A, the notion is defined analogously:

Definition 6.1 (Contractibility). A type A is called contractible if the type
Contractible (A) := Σa:A.Πa′:A.IdA a a

′ is inhabited.

Unsurprisingly, this definition requires A to be inhabited by a distin-
guished element a. Furthermore, every other element has to be equal to a.
At first, this property might look a bit weak: The corresponding ω-groupoid
of A has, obviously, “up to propositional equality” exactly one 0-cell, but
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what about higher cells? There is no need to worry, as we will soon under-
stand that this definition does indeed imply the same thing for all levels.

In the homotopy interpretation, the above definition looks like the defini-
tion of path-connectedness. However, if we have a closer look, we notice that
it gets interpreted as There exists a point a ∈ A and a continuous function
f which maps every point x ∈ A on a path between a and x. The continuity
of f is the important detail. For example, consider the space S1 It can,
for example, be defined as the set of all points in the euclidean plane that
have distance 1 from the origin. Another possible definition is to define it as
the CW-complex with one 0-cell, where we attach one 1-cell in the obvious
way; and this meets the type theoretic definition of the circle as a higher
inductive type (see [26], [39]) quite well. For the moment, let us identify
the circle with [0, 2π], divided by the relation that unifies 0 and 2π. Assume
that there is a continuous map f mapping a point x of this interval to a path
from 0 to this point. f(0) is a path from 0 to 0. Now, increase the argument
x continuously; this makes the path f(x) change continuously. Therefore,
f(2π) is homotopic to the path from 0 to 2π, composed with f(0); but of
course, f(2π) is just f(0), which shows that any path from 0 to itself is null-
homotopic, contradicting the properties of the circle.

6.2 Homotopy Levels

The notion of homotopy levels corresponds (roughly) to the question which
homotopy groups of a space are nontrivial. Clearly, for a contractible space,
they are all trivial; and in fact, we define H-level0 just to be the same as
contractible. A space is still “relatively simple” if it becomes contractible
after replacing it by it’s path space (or iterating this step several times). For
types, we define analogously:

Definition 6.2 (homotopy level). A type A is said to be of homotopy level
0 just if it is contractible:

H-level0 (A) := Contractible (A)

Moreover, if all the identity types are of homotopy level n, then A is of
homotopy level n+ 1.

H-leveln+1 (A) := Πab:A.H-leveln (IdA a b)

Remark 6.3. For small homotopy levels, the following notions are commonly
used:

• A type of homotopy level 0 is a singleton type, (isomorphic to) the
unit type, or just contractible.
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• A proposition, i.e. a type with at most one inhabitant, has homotopy
level 1.

• The types of homotopy level 2 are called sets.

• Less frequently used, but reasonable, is writing groupoids for types of
homotopy level 3.

• Similarly, the homotopy level 4 types are 2-groupoids, those of level 5
are 3-groupoids, and so on. In general, types do not need to have a
finite homotopy level or the homotopy level might just not be prov-
able. Univalence ensures that there is a type of homotopy level 3, the
universe type. The hierarchy of universes determines for which levels
a type exists, such that the type is provable not of the corresponding
level.

6.3 Weak Equivalences

To understand the notion of a weak equivalence, homotopical intuition is,
again, quite helpful. First of all, if f : A → B is a function and b ∈ B, we
define the preimage of b:

Definition 6.4 (Preimage of f : A→ B). The preimage of a function at b
is defined as the set of pairs of a point, together with a proof that this point
is indeed mapped to b:

f−1b := Σa:A.IdB b f(a)

Definition 6.5 (Weak equivalence property). A function f : A → B is
called a weak equivalence if all preimages are contractible:

isWeq f := Πb:B.Contractible
(
f−1b

)
Definition 6.6 (Weak equivalence). We define a weak equivalence between
types A, B to be a map, together with a proof that this map is indeed a
weak equivalence:

WeqAB := Σf :A→B.isWeq f

A second where natural definition is the one of an isomorphism:

Definition 6.7 (Isomorphism). An isomorphism between types A, B is a
tuple consisting of a map in each direction, together with a proof that each
composition is (extensionally equal to) the identity:

IsosAB := Σφ:A→B,ψ:B→A.Πa:A.IdA (ψ ◦ φ(a)) a×Πb:B.IdB (φ ◦ ψ(b)) b
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Remark 6.8. The notions of a weak equivalence and an isomorphism are
logically equivalent, but not isomorphic: a weak equivalence always is an
isomorphism and vice versa, but the two types Weq A B and IsosAB are
in general not isomorphic. However, it is the case that we can make them
isomorphic by adding a concrete coherence proof to the second one, thereby
making the 4-tuple a 5-tuple. This coherence condition does follow from the
other terms, but the crucial point is that no unique proof follows.

Lemma 6.9 (Composition with weak equivalences is weak equivalence).
Assume A,B,C are types. If w : Weq B C is a weak equivalence, then
composition with w is a weak equivalence, i.e Weq (A → B) (A → C) is
inhabited.

Proof. If u is the inverse of w in the alternative definition of a weak equiv-
alence, it is enough to show that λf.w ◦ f and λf.u ◦ f are inverse. More
precisely, it is sufficient to prove that their composition is extensionally equal
to the identity on A→ B respective A→ C, which is straightforward.

6.4 The Univalence Axiom

From the previous section, it is clear that the identity function on any type
A is always a weak equivalence (more precisely, can be completed canoni-
cally to a weak equivalence); by idIsWeq , we denote the canonical map of
type ∀A .Weq AA. Assume A, B are types. Furthermore, assume p is an
inhabitant of IdAB. From p, we can construct a weak equivalence between
A and B: Using the J eliminator, we only have to give this construction if
p is the reflexivity proof; but in that case, idIsWeq is just what we need.
The Univalence Axiom states that this map is again a weak equivalence.

The contents of this sections are, by the best of my knowledge, originally
by Voevodsky; they are nicely presented in Bauer & Lumsdaine’s notes [25].

We first define the “canonical map” precisely:

Definition 6.10. There is map of type ∀AB . IdAB → Weq AB, con-
structed as

eqToWeq = J (λAB . (p : IdAB)→Weq AB) idIsWeq

Definition 6.11 (Univalence Axiom). The map eqToWeq is a weak equiv-
alence. In other words, the Univalence axiom postulates a term of type

∀AB . isWeq eqToWeq

The Univalence Axiom provides us with the possibility to treat weak
equivalences similarly as propositional equalities. To make this clear, we
prove the following:
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Theorem 6.12 (Induction on weak equivalences). Given some

P : ∀U, V .Weq U V → Type,

assume we can construct a term for “canonical weak equivalences”. More
precisely, assume we can construct a term of the type

m : ∀T . P T T (idIsWeq T )

Then we can also construct an inhabitant of P .

Proof. Define
P ′ : ∀U V . IdU V → Type

by
P ′ = λU V q . P U V (eqToWeq q)

Now, ∀U .P ′ U U reflU is inhabited by m (this uses the β rule of identity
types). By J , P ′ is inhabited. Given any U , V as well as w : Weq U V
and univalence, we get a proof p : IdU V . But eqToWeq p is equal to w, so
using the constructed inhabitant of P ′ U V p and J (or just a substitution
rule that follows from J), we get an inhabitant of P U V w.

We want to conclude with a proof that Univalence implies Extensionality
of functions, i.e., if two functions are pointwise equal, we can prove that they
are equal. We summarise the main argument of [25].

Lemma 6.13 (source and target are weak equivalences). Recall that we
write AI for Σa,b:A.IdA a b. Given a type A, the canonical projection maps
srcA : AI → A and trgA : AI → A are weak equivalences.

Proof. We only give a sketch of the proof for the src function. Here, it seems
to be advantageous to use definition 6.7. We want to prove that the map
rA : A → AI is an inverse of srcA (recall rA = λa . (a, a, refla). It is clear
that srcA ◦ rA is extensionally equal to idA. For the other direction, we have
to show that every term (a, b, p) : AI equals (a, a, refla). But, using the J
eliminator, it is enough to show this if (a, b, p) is (a, a, refla), and in this
case, it follows by reflexivity.

Theorem 6.14 (Univalence and η imply Extensionality). Assume we have,
for types A,B and functions f, g : A→ B, a proof that f and g are pointwise
equal; i.e. we have p : Πa:A.IdA (fa) (ga). Using the Univalence axiom (and
the usual η law for functions), we can construct an inhabitant of IdA→B f g.
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Proof. We sketch the proof that is given in [25]. Define

d := λa . (fa, fa, reflfa)

e := λa . (fa, ga, pa)

Now, srcA ◦ d = λa . fa = srcA ◦ e. But for any weak equivalence s, Id d e is
inhabited iff Id ( s ◦ d)(s ◦ e) is, which is easily shown by induction on weak
equivalences. We therefore just need to apply lemma 6.12 to see that Id d e is
inhabited and also Id (trgA ◦ d) (trgA ◦ e), which is just Id (λa . fa) (λa . ga),
so the η law solves it.

Remark 6.15. For simplicity, we have only stated the nondependend form of
extensionality. The dependent version holds as well, but is more involved.

7 Hedberg’s Theorem

In 1998, Michael Hedberg has published a proof that, for a given type, decid-
able equality implies uniqueness of identity proofs [20]. His original proof is
quite lengthy, though it provides a couple of very interesting insights. Here,
I want to present a much more direct proof, which I have also formalised in
Coq (available on my homepage). There is also a post on the HoTT blog
[1] on the topic.

Definition 7.1 (decidability). A type A is said to be decidable if there is
either a proof that it is inhabited or a proof that it is not:

DecidableA = A+ ¬A

where, of course, ¬A is just short-hand for A→ ⊥. Decidable equality means
that we can, for each pair of terms, decide their equality type:

DecEquA = ∀a b .Decidable(IdA a b)

Uniqueness of identity proofs has already been introduced at the very
beginning of this composition, we just repeat the definition in the form of a
type:

Definition 7.2 (uip).

UIPA = ∀a b : A .∀p q : IdA p q . Id p q

Hedberg’s theorem states that decidable equality implies UIP:

Theorem 7.3 (Hedberg).

DecEquA → UIPA
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Proof. Assume dec: deceqA (in some context Γ). Further, assume (a, b, p) :
AI (in the context). We can now “ask” the “deciding function” dec what
it “thinks” about a, b respectively a, a; it will either tell us that they are
equal or unequal. The latter case would, however, immediately lead to a
contradiction, as we already know that a and b are equal. Therefore,

dec a b = inl q1 for some q1 : IdA a b

dec a a = inl q2 for some q2 : IdA a a

We claim that p equals q1◦q−1
2 propositionally (using the notation of remark

1.2.2 in the extended version: ◦ and ·−1 are the transitivity and symmetry
functions that arise from the equality eliminator). But applying J , we only
need to prove it for (a, b, p) = (a, a, refla), in which case q1 and q2 are the
same, so that it suffices to observe that q2 ◦ q−1

2 equals reflexivity. As every
inhabitant of IdA a b equals q1 ◦ q−1

2 , there cannot be more than one.

8 Yoneda Groupoids, Higher Dimensional Quo-
tients and the Root of Equality

As the content of this section has originally been an independent note and
it has not been completely adapted to this report, it might contain a couple
of things that have been discussed before.

Ordinary quotients in type theory have already been examined ([4]).
These are just types modulo an equivalence relation, where an equivalence
relation can be seen as a setoid, i. e. as a type of homotopy level 2. With
the possibility to speak about types of a higher level at hand, it is natural to
ask what a higher quotient could be. Intuitively, we should be able to divide
a type not only by a setoid, but by a type of an arbitrary homotopy level.
However, this is quite involved: Already for the division by a groupoid, there
is not really a canonical generalization of the setoid case. The problem is,
as one might have expected, that the number of coherence conditions grows
rapidly with the number of levels. A nice, convincing formulation has not
been found yet.

We define the notion of a Yoneda Groupoid formally, the name of which
is inspired by the relation to the Yoneda lemma, and show how a weak ω
groupoid structure can be extracted. We also prove that, in the presence of
bracket types (in the sense of Awodey & Bauer [9]), every Yoneda Groupoid
gives rise to a higher quotient. All of this is done purely syntactically,
thereby making Yoneda Groupoids a very powerful concept inside the theory
itself and completely independent of the Meta theory.

The question whether and in which way a Yoneda Groupoid is a stronger
structure than an ordinary weak ω groupoid leads to the notion of the Root of
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Equality, giving rise to a problem in (∞,∞)-category theory. This question
seems to be fundamental but has, to the best of our knowledge, not been
considered so far and is therefore an open problem.

8.1 Introduction to this topic

With the development of Homotopy Type Theory, the notion of a weak ω
groupoid has gained central importance. As van den Berg & Garner [12] and
Lumsdaine [28] have proved, every type, together with its equality, carries
this structure.

A weak ω groupoid has, as the name suggests, three basic characterising
features. First, it is a higher category with one level of cells for every
natural number. While this might look like a complicated concept (which it
certainly is!), an ω-category is more symmetric and therefore more natural
than an ordinary or an n-category. Every level is an ω-category again,
meaning that every level has the same fundamental structure. Second, as a
groupoid, all the morphisms (which are usually referred to as non-zero cells)
are isomorphisms. Finally, the structure is called weak as the usual laws,
such as associativity, hold only “up to homotopy” (or “up to isomorphy”),
meaning that h ◦ (g ◦ f) and (h ◦ g) ◦ f are not strictly equal, but only
isomorphic. This is natural as category theorists do not speak about equality
on the object level, and here, every cell is, for some category, on the object
level.

While varies informal definitions of this concept exist, a formalization is
involved. One recent approach by Altenkirch & Rypacek [6] makes use of
globular sets. Another attempt are Coquand & Huber’s constructive Kan
complexes [14].

As homotopy type theory gives up the principle of uniqueness of identity
proofs, is is natural to ask how a type with a nontrivial higher structure can in
general be constructed. One interesting approach are higher inductive types
(pushed forward by many researchers in this area, including Peter LeFanu
Lumsdaine and Michael Shulman). Another approach, which is apparently
expressionwise less powerful, but also does not require the theory to provide
as many additional features (the semantics and computational rules of which
still have not completely been developed yet), are higher quotients. These
are a straightforward generalization of ordinary quotients in type theory (at
least as long as we only divide a set-like type). However, the problem is that
clearly, we can only quotient a type by a higher relation if this relation has
the structure of a weak ω groupoid, which, then again, has no reasonable
formalization so far.

In this work, we introduce the notion of a Yoneda Groupoid. Those
groupoids are weak ω groupoids and in fact, we can, purely syntactically,
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extract the groupoid structure. All coherence conditions hold, the proof of
which can also be constructed without Meta-theoretic reasoning. Finally,
and we consider this the high point of our work, in the presence of bracket
types (in the sense of Awodey & Bauer [9]), we can purely syntactically
construct the corresponding higher quotient from a Yoneda Groupoid. In
the special case of an equivalence relation, our quotient is the exact quotient
of Altenkirch, Anberrée & Li [4]. We can prove all of their conditions inside
the theory. Further, their definition can be straightforwardly generalised to
higher dimensions, and our Yoneda quotients still fulfil this definition.

We work in a univalent Intensional Type Theory, i. e. there are equality
types and the univalence axiom, but not axiom K or uniqueness of identity
proofs. Our theory has dependent sum and function types, (preferably) a
hierarchy of universes and is, in total, exactly the kind of theory that is
used for homotopy type theory and univalent foundations. For the type of
propositional equality proofs that a equals b, we write a ≡ b. The convention
is that ≡ binds stronger than →. We also use the symbol ∼ (for relations)
and ↔, where A ↔ B is a shorthand for (A → B) × (B → A). The
decreasing order of binding strength of the symbols is ∼, ≡, →, ↔.

Given a type A , we can talk about a higher relation

∼: A→ A→ U,

where U is some universe. At the moment, we restrict ourselves to the
smallest universe which we call Type. We are interested in the question
whether this relation can be given the structure of a weak ω groupoid, where
the 0-cells are just the terms of A, the 1-cells between a and b are just the
terms of a ∼ b, the 2-cells between s, t : a ∼ b are just the proofs that s
equals t, and so on.

This question is very closely related of a problem stated by Thorsten
Altenkirch:

Question 8.1 (Altenkirch). Given ∼: A→ A→ Type with terms

• refl∼ : ∀a . a ∼ a,

• sym∼ : ∀a , b . a ∼ b→ b ∼ a,

• trans∼ : ∀a , b , c . a ∼ b→ b ∼ c→ a ∼ c,

how can we formalise the proposition that it is a weak ω groupoid?

A straightforward idea of approaching this question is stating all the
coherence conditions. For example,

λ : ∀p . (trans∼ refl∼p) ≡ p
ρ : ∀p . p ≡ (trans∼ refl∼p)
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(where we hide arguments that can be inferred for readability) are necessary
coherence conditions. But now, we get a new coherence condition,

λ refl∼ ≡ ρ refl∼,

and in general, every new condition gives rise to even more new conditions.
Nevertheless, a similar approach was taken by Altenkirch & Rypacek [6].

8.2 Yoneda Groupoids

Compared to the strategy described above, we chose a different approach.
If a relation ∼: A → A → Type is well-behaved, it should satisfy some
kind of Yoneda property. The condition we state is quite strong and, in
particular, sufficient, but not necessary. For the rest of the section, assume
∼: A→ A→ Type is a given higher relation.

Definition 8.2 (Yoneda Groupoid). A relation ∼ is a Yoneda Groupoid if
there is a function mapping every a : A to a pair (n,X), where n is the
“label” of its equivalence class and X represents this class’s structure (we
discuss the latter point later in detail).

isGrp(∼) = ΣF : A→ N×U . ∀a , b : A . a ∼ b ≡ (F a ≡ F b)

U could be any available universe or type. However, if U is just some
type Q : Type, then Q would already have to be some sort of super-quotient
(meaning that a subtype of Q is the quotient), and therefore, we consider
this case rather uninteresting. Our focus shall lie on the possibility that U
is a universe, as univalence provides then additional equality proofs. For
our discussion, we find it convenient to choose U = Type, so let us assume
that we are using the smallest universe.

If the cardinality of N is not sufficient, any other proper set could serve
for the labelling. In fact, we could even make the indexing set part of the
definition in the form of

isGrp(∼) = ΣI : Type, h-level2(I), F : A→ I×U .∀a , b : A . a ∼ b ≡ (F a ≡ F b).

Note that, for Yoneda Groupoids, we could make univalence unnecessary
by replacing equality by weak equivalence. For the quotients discussed later,
this will not be possible any more.

This definition is inspired by two different formalisations of equivalence
relations in the proof-irrelevant case and can actually be understood as a
combination of those. The first is, for equivalence relations ∼: A → A →
Prop, the “Yoneda”-characterisation

∀a, b . a ∼ b↔ ∀x . a ∼ x↔ b ∼ x
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We have not seen this concrete characterisation before, but we assume that
it is well-known as it looks completely natural. Unfortunately, it is not
possible to generalise it in the straightforward way to higher relation as
there is an unwanted “shift” of the level by 1 included. If we try to use the
type

∀a, b . a ∼ b ≡ ∀x . a ∼ x ≡ b ∼ x,

we quickly realise that the right-hand side goes up “one equality level too
much”. For example, if we have a type with only one term a, and a ∼ a ≡ 5,
then the left-hand side is 5, while the right-hand side is 120 (there are 5!
automorphisms on the set 5). We could try to fix this by stating

∀a, b . a ∼ b↔ ∀x . a ∼ x ≡ b ∼ x,

but clearly, logical equivalence is not enough for a valid characterisation.

The second source of inspiration has been the definition of an equivalence
class by Voevodsky:

isCl(P : A→ Prop) = [Σ(a : A).P a]× ...

Here, it is already assumed that ∼ is an equivalence relation and the idea is
that the quotient is just the collection of equivalence relations. Originally,
our definition used equivalence classes, making it very similar to the one of
Voevodsky. After realising that it is not necessary to have a whole type of
equivalence classes indexed over A (which works, but it involved), we were
able to simplify it by just using a single F : A → Type which also adds
indices from a proper set (such as the natural numbers) to distinguish classes
that are isomorphic, but distinct.

Notation. Whenever a term is quantified universally by ∀, we consider it
an implicit argument. This has no meaning for the theory but only for our
representation: If a term is applied on an implicit argument, we use indices
for better readability, i. e. if we have i : ∀a , b : A . a ∼ b ≡ (F a ≡ F b), we
write ia,b(s) instead of i a b s.

Our main result, which we prove step-by-step in the next sections, is the
following:

Theorem 8.3. Given a proof term of isGrp(∼), we can construct terms
refl∼, sym∼ and trans∼ that turn (A,∼) into a weak ω groupoid. In par-
ticular, all the coherence conditions (as mentioned, e. g., in [6]) hold, the
proof of which can also be constructed. Moreover, if bracket types [9] are
available in the theory, we can directly construct the quotient A/ ∼. If A
is a h-set in the sense of homotopy type theory and ∼ is an equivalence
relation, i. e. ∼: A → A → Prop, our quotient is just an exact quotient in
the sense of Altenkirch, Anberrée & Li [4], without the Meta-property that
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the β rule holds definitionally. Further, their definition of an exact quotient
can be generalised to arbitrary higher relations, and our quotients satisfy this
generalised definition.

However, the constructed quotient will not be in Type(= Type0) any-
more, but in the next universe Type1 instead. This is not at all surprising,
as univalence and uniqueness of identity proofs are not inconsistent as long
as only one universe is available. More general, in order to construct a type
which has provably not h-level (n+1), a universe Typen is required.

8.3 Groupoid Structure of a Yoneda Groupoid

We begin with the fairly simple proof that a Yoneda Groupoid is indeed a
weak ω groupoid.

Lemma 8.4. Given p : isGrp(∼), the higher relation ∼ carries the struc-
ture of a weak ω groupoid (in the sense of [6]??) and this structure can be
extracted purely syntactically from the proof p.

Remark 8.5. Of course, the structure is not unique in general, as we have no
way to distinguish between terms of a ∼ b (without looking at p). But, and
this is more important, even up to isomorphism, there are fundamentally
different structures. For example, for A = 1 and ∼ = 6, ∼ could be either
the equivalent of the group Z/(6) or the equivalent of the permutation group
S3. It really is the proof of isGrp that makes the choice.

Proof. The main ingredient of our construction is the groupoid property of
equality itself. In particular, equality provides the usual terms refl : ∀a.a ≡ a
and sym : ∀a , b . a ≡ b → b ≡ a as well as trans : ∀a, b, c.b ≡ c → a ≡ b →
a ≡ c.

The proof p : isGrp(∼) is necessarily a pair (F, i).

We define refl∼, sym∼ and trans∼ in terms of p. For readability, we first
omit all implicit arguments in the definitions (we give the precise definitions
below):

refl∼ = sym i refl

sym∼ s = sym i (sym (i s))

trans∼ t s = sym i (trans (i t) (i s))

The strategy is the same in each case: We use the isomorphism (or equality)
i to translate the problem to the case where ∼ is replaced by ≡. Now, in the
case of equality, we know exactly how the required operation can be done,
and we can just transport the result back using the inverse of i.
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With all implicit arguments, the definitions are:

refl∼a = syma∼a,F a≡F a ia,a (reflF a)

sym∼a,b (s : a ∼ b) = sym ib,a (symFa,Fb(ia,b s))

trans∼a,b,c (t : b ∼ c) (s : a ∼ b) = syma∼c,Fa≡Fc ia,c (transFa,Fb,Fc (ib,c t) (ia,b s))

Every single coherence condition just holds because it holds for equality.
For example,

sym∼ ◦ sym∼(s) = sym i (sym (i (sym i (sym (i s))))

is propositionally equal to s. For a proof, we just need to use that i◦ (sym i)
is the identity, then the same for sym◦sym, and finally, that (sym i)◦ i is the
identity as well. It becomes even clearer if we write ·−1 for sym and f ◦ g(a)
instead of f(g(a)):

sym∼ ◦ sym∼(s) = i−1 ((i ◦ i−1 (i s)−1)−1

8.4 Quotienting by a Yoneda Groupoid

Lemma 8.6. If the type theory has bracket types as introduced by Awodey
& Bauer [9], every Yoneda Groupoid gives rise to a higher quotient in the
sense of Altenkirch, Amberr‘ee & Li [4].

Proof. As before, the proof is some tuple (F, i). Define the “carrier” of the
quotient

Q = Σ[a : A];x : N×Type; [F (a) ≡ x]

and the projection into the carrier

q(a) = ([a], F (a), [reflF (a)]).

For soundness and exactness, we need to prove

∀a , b . a ∼ b ≡ (q(a) ≡ q(b))

which is obvious from i.

Concerning the eliminator, whenever B : Q→ Type and m : (a : A)→
B[a] are given (with coherences), we can a given ([a], x, [w]) just map to ma.
Here, we have to use the property that ma does not depend on the concrete
representant a. This property is one of the assumption of the eliminator.

Note that it is in general not possible to construct an embedding Q→ A
and the quotient is therefore, in the sense of [4], not definable.

29



8.5 Examples

Some examples:

• A = 1, ∼ = 6 is a Yoneda Groupoid, proved by (λ → 3, someproof).
The quotient is the symmetric group on 3, which is not inside the
universe Type anymore. This is exactly how it should have been ex-
pected, as a single universe with univalence is consistent with the as-
sumption that equality proofs are always unique. One universe above
Type does not allow this assumption anymore, and indeed, we have
constructed the group S3 : Type1. (A,∼) has another possible quo-
tient which is the group Z/(6), but unfortunately, we cannot get it
with our construction.

• A = 1, ∼ = S3 (where we already need ∼ to be of the type A →
A → Type1) is a Yoneda Groupoid as (λ → S3, someotherproof) :
isGrp(∼) (If I am not mistaken, but it should be true, the sym-
metric group over S3 is S3 again.) The quotient gives us (assuming
that enough universes are available) a type of h-level 4, let us call it
1S3 : Type2. Obviously, we could carry on this example to get types
with higher and higher structure, making more and more universes
necessary.

• In the same way, we can construct the quotients for A = 1, ∼ = n!
for any natural number n. It is always a Yoneda Groupoid by (λ →
n, yetanotherproof) and the quotient will be the symmetric group Sn.
However, our construction does not provide us with any other group
structure on n!. If we carry on as in the example before, the only thing
we have to care about is that the automorphism groups of S2 and S6

is not, as in every other case, S2 and S6 again, thereby making these
two cases special.

• We can now freely combine the groups on different levels constructed
above, for example, we get S3 × 1S7 + S5 + 3 : Type2, which is a
groupoid with 5 distinguishable cells on level zero, 11 on level one,
and 29 on level two. There are also 29 n-cells for every n > 2.

8.6 The Root of Equality

Our definitions immediately give rise to the question: When does this func-
tion F exist? Or, formulated more basically: Given a type C, in which cases
is Σ(B : Type), C ≡ (B ≡ B) inhabited?

In the example C = 6, a solution exists, namely B = 3, leading to the
symmetric group S3 as discussed before. However, we cannot construct the
group Z/(6). In the case of C = 1, we get two solutions, namely S0 and S1.
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The first question is: Can we find an appropriate structure if C is not a
discrete set where the number of terms equals a factorial? First, does this
structure exist in the ω groupoid model (resp. the simplicial set model)?
Such a group does exist indeed for C = 3 which can be generalised to
other non-factorial sets (Christian Sattler) and a conjecture is that, given
an n − groupoid, there always is an n + 1 − groupoid with the required
property (Christian Sattler).

There are several things left to do, see the section on the future work-
plan.

9 Future Work-plan

There are quite a couple of projects and subjects that I find interesting and
plan to work on. Here, I only outline the ones that are related to Homotopy
Type Theory. Other ideas are explained in the extended version of this
report.

9.1 Higher Dimensional Quotients and the Root of Equality

Our Yoneda Groupoids give rise to the following question in infinity category
theory: Given an (ω, n)-category A (an interesting case being n = ∞), in
which cases is there an ω-category B such that the ω-category formed by the
automorphisms (we could also ask about endofunctors) on B is isomorphic
(or weakly equivalent) to A? This is an obvious generalisation of the question
which groups appear as automorphism groups. It seems to be fundamental
(even independently of type theory) and is, to the best of my knowledge,
an open problem and might not even have been considered yet; however, I
might be completely wrong here.

The future work for this project is therefore kind of obvious. Further,
if this root always exists, it would be interesting to check if it satisfies a
naturality condition such that the simplicial sets model is still a model of
the theory together with

postulate:(A : Typen)→ Σ(B : Type1+n), A ≡ (B ≡ B),

The reason why I assume that this question is not answered yet is that
infinity category theory is not very exhaustively explored so far.

9.2 Weak Canonicity

First, there is a question asked by Thorsten Altenkirch on what I call “weak
canonicity”. Canonicity is, together with strong normalization (decidability
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of typechecking) and subject reduction, a very feasible property that is usu-
ally given in intensional type theories. It states that every term of a (base)
type in the empty context reduces to a canonical one, i. e. one that makes
use of a constructor. For example, in “standard” intensional type theories,
a natural number in the empty context always reduces (β) to either zero or
the successor of some number.

Another feasible property is function extensionality, i. e. the property
that two functions are propositionally equal whenever they are pointwise
equal. Unlike canonicity, this is not necessarily the case in intensional theo-
ries. Of course, we could fix this by postulating the existence of a term ext,
but that would destroy canonicity (see, e. g., [3]). The same problem arises
for Voevodsky’s univalence axiom (see part 2 of this report).

However, there is still hope that a weaker form of canonicity could hold.
It could be the case that every term (of a base type) in the empty context is,
if not definitionally, then at least propositionally equal to a canonical one.
In fact, all the examples of irreducible natural number I have looked at so
far have been propositionally equal to a canonical number.

The (general) question to ask is therefore: Given a type theory that
satisfies (strong or weak) canonicity, which constants can be added without
loosing weak canonicity (how can those constants be characterized)? In
particular, is this true for the univalence axiom? If yes, can the existence of
the equality proof be given constructively (which seems very likely), so that
it is not only true that a term is equal to a canonical one, but this canonical
one can also be computed and (“automatically”) be proven equal?

This question seems to be quite relevant, not only from a theoretical
point of view. If every term is (constructively) equal to a canonical one, it is
natural to ask whether the system can be extended in a way that allows us to
exchange the two terms (treat them as definitionally equal). This might lead
to an alternative approach, or a supplement, of observational type theory
([2], [5]) and possibly computational rules for the univalence axiom.

So far, I have not made any mentionable progress on this question. A
possibly helpful strategy is described in [21].

9.3 Topos Theory

From various vague statements of mathematicians (mostly without type
theoretic background) at the Swansea mini-school 6, it became clear that
topos theory is somewhat connected to univalence. Indeed, the nlab [33]

6Modern Perspectives in Homotopy Theory: Infinity Categories, Infinity Operads and
Homotopy Type Theory, http://maths.swan.ac.uk/staff/jhg/minischool2012/index.
html
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states that, just as type theory formalizes the internal logic of type theory,
the internal logic of an (∞, 1)-topos is homotopy type theory. In particular,
univalence is (apparently) naturally present in such topoi. Although most
of this statements seems to be a reformulation of topics I have discussed in
part 1 of this report, it appears to be very advisable to study a basic amount
of topos theory.
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