Internal ∞-Categories with Families

Nicolai Kraus

ISP 101 Seminar (Strathclyde), 18 Feb 2021
Talk based on arXiv:2009.01883.
\Longrightarrow Part 1: Why do we want ∞-CwF's?
Part 2: How to define them?
Part 3: What works or is still missing?

Goal: Define what a model of type theory is
 - in type theory!
 (in particular: intended initial model ~"syntax")

Peter Dybjer, 2005: Internal Type Theory

Danielsson 2006
Chapman 2009
Shulman 2014
Escardó-Xu 2014
K. 2015

Altenkirch-Kaposi 2016
Bucholtz 2017
Abel-Öhman-Vezzosi 2017
Ahrens-Lumsdaine-Voevodsky 2017/18
Brunerie-de Boer 2018-20
Lumsdaine-Mörtberg 2018-20
Kaposi-Kovács-K., 2020

```
record CwF : Set }\mp@subsup{|}{1}{}\mathrm{ where
    field
        Con : Set
        Sub : Con }->\mathrm{ Con }->\mathrm{ Set
        Ty : Con }->\mathrm{ Set
        Tm : (\Gamma : Con) -> Ty \Gamma }->\mathrm{ Set
        - : Con
        __ : (\Gamma : Con) -> Ty Г -> Con
            -- (and so on)
```


CwF definition as a GAT

First example of a CwF: "Syntax QIIT", a.k.a. the initial model as a QIIT (Altenkirch-Kaposi 2016)
data Con: Type where

- : Con
${ }^{\triangleright}{ }_{\text {_ }}:(\Gamma:$ Con $) \rightarrow$ Ty $\Gamma \rightarrow$ Con
data Sub: Con \rightarrow Con \rightarrow Type where id : Sub ГГ

$$
\text { data Ty : Con } \rightarrow \text { Type where }
$$

$$
\begin{aligned}
\text { data } \mathrm{Tm}:(\Gamma: \text { Con }) & \rightarrow(A: \text { Тy } \Gamma) \\
& \rightarrow \text { Type where }
\end{aligned}
$$

Initiality theorem (Brunerie, de Boer, Lumsdaine, Mörtberg 2019-today) implies: Syntax QIIT \simeq non-well-typed syntax with wellformedness predicates.

Second example of a CwF: "Standard Model", a.k.a. the universe with the obvious structure

- Con is the universe \mathcal{U}
- Sub $\Gamma \Delta$ is the function type $(\Gamma \rightarrow \Delta)$
- Ty $\Gamma \quad$ is given as $(\Gamma \rightarrow \mathcal{U})$
- $\operatorname{Tm} \Gamma A \quad$ is given as $\Pi(x: \Gamma) \cdot(A x) \quad(x: \nrightarrow) \rightarrow A_{x}$
- all operations are canonical
- all equations hold judgmentally (in Agda)

The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

$$
(x y: A) \rightarrow(p q: x=y) \rightarrow(p=q)
$$

The above definition of a CwF works assuming UIP.
What if UIP is not assumed?
Happens e.g. in HoTT and in Agda \{-\# OPTIONS --without-K \#-\}
Two canonical approaches:
(1) Ignore it: Do everything as before.
or
(2) Make up for it: Assume that Con, Sub, Ty, Tm are families of h-sets.

No UIP: problems of the canonical approaches

(1) Ignore the absence of UIP: Do everything as before.

But then: \quad idl $_{\sigma}:$ id $\diamond \sigma=\sigma$

$$
\mathrm{idr}_{\sigma}: \sigma \diamond \mathrm{id}=\sigma
$$

Initial model ($\mathrm{w} /$ base types) does not satisfy $\mathrm{idl}_{\mathrm{id}}=\mathrm{id} \mathrm{r}_{\mathrm{id}}$.
\Rightarrow Initial model is not based on h-sets \& does not have decidable equality.
\Rightarrow "Syntax QIIT" (example 1) is not initial.
(2) Bake UIP into the definition of CWF: Require Con etc. to be h-sets.

Typical "HoTT solution".
But: The universe is not an h-set.
\Rightarrow The "standard model" (example 2) fails.

Why we really want both examples (syntax QIIT and standard model)
Shulman 2014:
Is the $\boldsymbol{n}^{\text {th }}$ universe a model of HoTT with ($\mathrm{n}-1$) universes?
I.e.: Can we define the syntax and interpret it in \mathcal{U}_{n} ?

Work by: Escardó-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovaćs, Altenkirch, ...
However: Even the simplest ${ }^{1}$ version of this is still open!
${ }^{1}$ (where the core problem occurs)
The two examples would give a solution:

Back to the definition from slide 4:

Goal: Make this coherent! E.g. we really need $\mathrm{idl}_{\mathrm{id}}=\mathrm{idr}_{\mathrm{id}}$. Brutal method: Require h-sets everywhere (too restrictive).
Proposed method: Use higher categories $\Longrightarrow(\infty, 1)$-CwF's.

Part 1: Why do we want ∞-CwF's?
\Longrightarrow Part 2: How to define them?
Part 3: What works or is still missing?

As discussed above: A 1-CwF consists of

- a category \mathcal{C} of contexts and substitutions
- a presheaf of types
- another functor for terms
- a context extension operation.

We need to ∞-categorify everything. This talk: ∞-categories (the first point).
What is an ∞-category? Model used: Rezk's Segal spaces.
Strategy:
(1) Start with a semisimplicial type ("basic structure")
(2) Add Segal condition ($\Rightarrow \infty$-semicategory)
(3) Add identities ($\Rightarrow \infty$-category)
(1) Recall: semisimplicial type up to level 2 is tuple $\left(A_{0}, A_{1}, A_{2}\right)$ where

$$
\begin{aligned}
& A_{0}: \text { Type } \\
& A_{1}: A_{0} \rightarrow A_{0} \rightarrow \text { Type } \\
& A_{2}:\left\{x y z: A_{0}\right\} \rightarrow\left(A_{1} x y\right) \rightarrow\left(A_{1} y z\right) \rightarrow\left(A_{1} x z\right) \rightarrow \text { Type }
\end{aligned}
$$

A_{0} is type of "points"
A_{1} is type of "ines"
A_{2} is tyre of "triangle files"

(2) Adding the Segal condition

Semicategory (beginning)
Ob : Type \qquad
How: $\mathrm{Ob} \rightarrow \mathrm{Ob} \rightarrow$ Type
${ }^{\circ}{ }_{-}:\{x y z: \mathrm{Ob}\} \rightarrow(\operatorname{Hom} y z)$
$\rightarrow(\operatorname{Hom} x y) \rightarrow(\operatorname{Hom} x z)$

A_{0} : Type

Semisimplicial type (beginning)
$A_{1}: A_{0} \rightarrow A_{0} \rightarrow$ Type
$A_{2}:\left\{x y z: A_{0}\right\} \rightarrow\left(A_{1} y z\right)$
$\rightarrow\left(A_{1} x y\right) \rightarrow\left(A_{1} x z\right) \rightarrow$ Type
$h_{2}:\left\{x y_{2}: A_{0}\right\} \rightarrow\left(9: A_{1} y z\right) \rightarrow\left(f: A_{1} \times y\right)$
\rightarrow is Contr $\left(\sum\left(h: A_{1} \times 2\right), A_{2} 9 f h\right)$
Lemma: For $X:$ Type, we have $X \simeq \mathscr{P}(P: X \rightarrow \operatorname{Type}) \cdot \sin \operatorname{Contr}(\Sigma(x: X) \cdot P x)$.
$\operatorname{ontr}\left(\sum(x: X) . P x\right)$.
singlehors-ave-costr)
h_{2} says: given fig there 3 exactly ane h s.t. A_{2} of h
(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to univalent identities (cf. Capriotti-Kraus 2018).

Here: We don't want built-in univalence. Instead:
Def: A morphism $f: A_{1} x y$ is a good identity if it is an idempotent equivalence.

Def: f is idempotent if $A_{2} f f f$.

Def: f is an equivalence if pro- and post-composition with f is.

composition

Definition: A semicategory (higher semicategory, semi-Segal type) has a good identity structure if every object (point) is equipped with an idempotent equivalence.

Theorem: "Having a good identity structure":

- is a propositional property; and
- generates all degeneracies; and
- is interderivable with a "standard" identity structure (id with idl and idr).

Definition: An ∞-category is a semisimplicial type which satisfies the Segal condition and has a good identity structure.
(Extending ∞-categories to ∞ - CwF 's is not done in this talk.)

Part 1: Why do we want ∞-CwF's?
Part 2: How to define them?
\Longrightarrow Part 3: What works or is still missing?

Done (see paper):

$\sqrt{9}$ Definition of $\infty-\mathrm{CwF}$'s

- Variations, such as univalent or finite-dimensional $\infty-\mathrm{CwF}$'s
- Syntax QIIT as an $\infty-\mathrm{CwF}$

Standard model as an $\infty-C w F$

- Initial ∞ - CwF (given appropriate techniques)
- Slice $\infty-\mathrm{CwF}$'s

To do:

- Initiality of the Syntax QIIT
- Interderivability (in some suitable sense) of the two open problems "Can X. HoT gat itself?" and "Can wo define semisimplicial types?"
(Thanks for your attention! The end.)

