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So, what is Topology actually?

A major area of mathematics that examines continuity!

Sets often have a natural notion of open subsets, e.g. in R:

(1, 2) := {x | 1 < x < 2} is open, but [1, 2] := {x | 1 ≤ x ≤ 2} is
not.

Definition (Continuity of f : X → Y ):

f is continuous iff inverse images of open sets are open, i.e. if V ⊂ Y
is open, so is f −1(V ).
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all notions can be broken down to:

Inverse images of open sets are open.



Identity Types without UIP - a Reminder

a, b : A
a ≡ b Type

refla : a ≡ a

p : a ≡ b

p−1 : b ≡ a

q : b ≡ c

q ◦ p : a ≡ c
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for example:
a := b := x
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Back to Topology

Structures:

Topological spaces

→ Special case: Hausdorff spaces (or T2)

→→ Special case of this special case: Metric spaces

→→→ Even much more special: Normed vector spaces

→→→→ ...and finally: Rn, or just subsets of it!



A disc

a type - we call
it X

a topological space
- we call it X
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A disc

p : a ≡ b

q : b ≡ c

a, b ∈ X

p : [0, 1]→ X

p(0) = a

p(1) = b

q : [0, 1]→ X

q(0) = b

q(1) = c



A disc

q ◦ p : a ≡ c

q ◦ p :

[0, 1]→ X

x 7→{
p(2x), x < 0.5

q(2x − 1), else



Another set

a ≡ c not
inhabited

not path-connected



A disc

p, p′ : a ≡ b p, p′ : [0, 1]→ X



A disc
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A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b

p : [0, 1]1 → X

a : [0, 1]0 → X
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A disc
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A disc

H ′ : p ≡ p′

H ′ : [0, 1]2 → X

H ′(0, ·) = p

H ′(1, ·) = p′

H ′(t, 0) = a

H ′(t, 1) = b



A disc

K : H ′ ≡ H

K : [0, 1]3 → X

K (0, ·, ·) = H ′

. . .



A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b



Putting it together

a

p

&&

p′

xx
b

H
�$

H′

:B

JT

K



So, which types can we get?

any CW complex?
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What I (at the moment) hope:

Creating a simple model

that is complete

and easy to understand and to use



Where is it going?

e.g. for this problem (Thorsten):

subst-refl P (subst P (refl x) p)

and

cong (subst P (refl x)) (subst-refl P p)

both prove

subst P (refl x) (subst P (refl x) p) ≡ subst P (refl x) p

But are they equal?
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