{-# OPTIONS --without-K #-}

open import lib.Basics
open import lib.types.Paths

module lib.types.Pi where

Π-level :  {i j} {A : Type i} {B : A  Type j} {n : ℕ₋₂}
   (((x : A)  has-level n (B x))  has-level n (Π A B))
Π-level {n = ⟨-2⟩} p =
  ((λ x  fst (p x)) ,  f  λ=  x  snd (p x) (f x))))
Π-level {n = S n} p = λ f g 
  equiv-preserves-level λ=-equiv
    (Π-level  x  p x (f x) (g x)))

module _ {i j} {A : Type i} {B : A  Type j} where
  abstract
    Π-is-prop : ((x : A)  is-prop (B x))  is-prop (Π A B)
    Π-is-prop = Π-level

    Π-is-set : ((x : A)  is-set (B x))  is-set (Π A B)
    Π-is-set = Π-level

module _ {i j} {A : Type i} {B : Type j} where
  abstract
    →-level : {n : ℕ₋₂}  (has-level n B  has-level n (A  B))
    →-level p = Π-level  _  p)

    →-is-set : is-set B  is-set (A  B)
    →-is-set = →-level

    →-is-prop : is-prop B  is-prop (A  B)
    →-is-prop = →-level

{- Equivalences in a Π-type -}
equiv-Π-l :  {i j k} {A : Type i} {B : Type j} (P : B  Type k) {h : A  B}
             is-equiv h  Π A (P  h)  Π B P
equiv-Π-l {A = A} {B = B} P {h = h} e = equiv f g f-g g-f where
  w : A  B
  w = (h , e)

  f : Π A (P  h)  Π B P
  f u b = transport P (<–-inv-r w b) (u (<– w b))

  g : Π B P  Π A (P  h)
  g v a = v (–> w a)

  f-g :  v  f (g v) == v
  f-g v = λ= λ b  to-transp (apd v (<–-inv-r w b))

  g-f :  u  g (f u) == u
  g-f u = λ= λ a  to-transp $ transport  p  u _ == _ [ P  p ])
                                         (is-equiv.adj e a)
                                         (↓-ap-in P (–> w)
                                                    (apd u $ <–-inv-l w a))

equiv-Π-r :  {i j k} {A : Type i} {B : A  Type j} {C : A  Type k}
   (∀ x  B x  C x)  Π A B  Π A C
equiv-Π-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f
  where f : Π A B  Π A C
        f c x = –> (k x) (c x)

        g : Π A C  Π A B
        g d x = <– (k x) (d x)

        f-g :  d  f (g d) == d
        f-g d = λ=  x   <–-inv-r (k x) (d x))

        g-f :  c  g (f c) == c
        g-f c = λ=  x  <–-inv-l (k x) (c x))

module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
         {B₀ : A₀  Type j₀} {B₁ : A₁  Type j₁} where
  equiv-Π : (u : A₀  A₁) (v :  a  B₀ (<– u a)  B₁ a)  Π A₀ B₀  Π A₁ B₁
  equiv-Π u v = Π A₀ B₀           ≃⟨ equiv-Π-l _ (snd (u ⁻¹)) ⁻¹ 
                Π A₁ (B₀  <– u)  ≃⟨ equiv-Π-r v 
                Π A₁ B₁           ≃∎

  equiv-Π' : (u : A₀  A₁) (v :  a  B₀ a  B₁ (–> u a))  Π A₀ B₀  Π A₁ B₁
  equiv-Π' u v = Π A₀ B₀           ≃⟨ equiv-Π-r v 
                 Π A₀ (B₁  –> u)  ≃⟨ equiv-Π-l _ (snd u) 
                 Π A₁ B₁           ≃∎


{- Dependent paths in a Π-type -}
module _ {i j k} {A : Type i} {B : A  Type j} {C : (a : A)  B a  Type k}
  where

  ↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
     ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
         u t == u' t' [ uncurry C  pair= p q ])
     (u == u' [  x  Π (B x) (C x))  p ])
  ↓-Π-in {p = idp} f = λ=  x  f (idp {a = x}))

  ↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
     (u == u' [  x  Π (B x) (C x))  p ])
     ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
         u t == u' t' [ uncurry C  pair= p q ])
  ↓-Π-out {p = idp} q idp = app= q _

  ↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
     (f : {t : B x} {t' : B x'} (q : t == t' [ B  p ])
             u t == u' t' [ uncurry C  pair= p q ])
     {t : B x} {t' : B x'} (q : t == t' [ B  p ])
     ↓-Π-out (↓-Π-in f) q == f q
  ↓-Π-β {p = idp} f idp = app=-β  x  f (idp {a = x})) _

{- Dependent paths in a Π-type where the codomain is not dependent on anything

Right now, this is defined in terms of the previous one. Maybe it’s a good idea,
maybe not.
-}
module _ {i j k} {A : Type i} {B : A  Type j} {C : Type k} {x x' : A}
  {p : x == x'} {u : B x  C} {u' : B x'  C} where

  ↓-app→cst-in :
    ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
       u t == u' t')
     (u == u' [  x  B x  C)  p ])
  ↓-app→cst-in f = ↓-Π-in  q  ↓-cst-in (f q))

  ↓-app→cst-out :
    (u == u' [  x  B x  C)  p ])
     ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
         u t == u' t')
  ↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q)

  ↓-app→cst-β :
    (f : ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
            u t == u' t'))
     {t : B x} {t' : B x'} (q : t == t' [ B  p ])
     ↓-app→cst-out (↓-app→cst-in f) q == f q
  ↓-app→cst-β f q =
    ↓-app→cst-out (↓-app→cst-in f) q
             =⟨ idp 
    ↓-cst-out (↓-Π-out (↓-Π-in  qq  ↓-cst-in (f qq))) q)
             =⟨ ↓-Π-β  qq  ↓-cst-in (f qq)) q |in-ctx
                      ↓-cst-out 
    ↓-cst-out (↓-cst-in {p = pair= p q} (f q))
             =⟨ ↓-cst-β (pair= p q) (f q) 
    f q 

{- Dependent paths in an arrow type -}
module _ {i j k} {A : Type i} {B : A  Type j} {C : A  Type k}
  {x x' : A} {p : x == x'} {u : B x  C x} {u' : B x'  C x'} where

  ↓-→-in :
    ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
       u t == u' t' [ C  p ])
     (u == u' [  x  B x  C x)  p ])
  ↓-→-in f = ↓-Π-in  q  ↓-cst2-in p q (f q))

  ↓-→-out :
    (u == u' [  x  B x  C x)  p ])
     ({t : B x} {t' : B x'} (q : t == t' [ B  p ])
       u t == u' t' [ C  p ])
  ↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q)

-- Dependent paths in a Π-type where the domain is constant
module _ {i j k} {A : Type i} {B : Type j} {C : A  B  Type k} where

  ↓-cst→app-in : {x x' : A} {p : x == x'}
    {u : (b : B)  C x b} {u' : (b : B)  C x' b}
     ((b : B)  u b == u' b [  x  C x b)  p ])
     (u == u' [  x  (b : B)  C x b)  p ])
  ↓-cst→app-in {p = idp} f = λ= f

  ↓-cst→app-out : {x x' : A} {p : x == x'}
    {u : (b : B)  C x b} {u' : (b : B)  C x' b}
     (u == u' [  x  (b : B)  C x b)  p ])
     ((b : B)  u b == u' b [  x  C x b)  p ])
  ↓-cst→app-out {p = idp} q = app= q

split-ap2 :  {i j k} {A : Type i} {B : A  Type j} {C : Type k} (f : Σ A B  C)
  {x y : A} (p : x == y)
  {u : B x} {v : B y} (q : u == v [ B  p ])
   ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q
split-ap2 f idp idp = idp

{-
Interaction of [apd] with function composition.
The basic idea is that [apd (g ∘ f) p == apd g (apd f p)] but the version here
is well-typed. Note that we assume a propositional equality [r] between
[apd f p] and [q].
-}
apd-∘ :  {i j k} {A : Type i} {B : A  Type j} {C : (a : A)  B a  Type k}
  (g : {a : A}  Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y)
  {q : f x == f y [ B  p ]} (r : apd f p == q)
   apd (g  f) p == ↓-apd-out C r (apd↓ g q)
apd-∘ g f idp idp = idp

{- When [g] is nondependent, it’s much simpler -}
apd-∘' :  {i j k} {A : Type i} {B : A  Type j} {C : A  Type k}
  (g : {a : A}  B a  C a) (f : Π A B) {x y : A} (p : x == y)
   apd (g  f) p == ap↓ g (apd f p)
apd-∘' g f idp = idp

∘'-apd :  {i j k} {A : Type i} {B : A  Type j} {C : A  Type k}
  (g : {a : A}  B a  C a) (f : Π A B) {x y : A} (p : x == y)
   ap↓ g (apd f p) == apd (g  f) p
∘'-apd g f idp = idp


{- 2-dimensional coherence conditions -}

-- postulate
--  lhs :
--   ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
--   {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
--   (k : (u ◃ apd g p) == (apd f p ▹ v))
--   (h : {a : A} → B a → C a)
--   → ap h u ◃ apd (h ∘ g) p == ap↓ h (u ◃ apd g p)

--  rhs :
--   ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
--   {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
--   (k : (u ◃ apd g p) == (apd f p ▹ v))
--   (h : {a : A} → B a → C a)
--   → ap↓ h (apd f p ▹ v) == apd (h ∘ f) p ▹ ap h v

 -- ap↓-↓-=-in :
 --  ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
 --  {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
 --  (k : (u ◃ apd g p) == (apd f p ▹ v))
 --  (h : {a : A} → B a → C a)
 --  → ap↓ (λ {a} → ap (h {a = a})) (↓-=-in {p = p} {u = u} {v = v} k)
 --  == ↓-=-in (lhs {f = f} {g = g} k h ∙ ap (ap↓ (λ {a} → h {a = a})) k 
 --                                     ∙ rhs {f = f} {g = g} k h)

{-
Commutation of [ap↓ (ap h)] and [↓-swap!]. This is "just" J, but it’s not as
easy as it seems.
-}

module Ap↓-swap! {i j k } {A : Type i} {B : Type j} {C : Type k}
  {D : Type } (h : C  D) (f : A  C) (g : B  C)
  {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
  (r : f a == g b') (s : f a' == g b)
  (t : r == s  ap g q  [  x  f x == g b')  p ])
  where

  lhs : ap h (ap f p ∙' s) == ap (h  f) p ∙' ap h s
  lhs = ap-∙' h (ap f p) s  (ap  u  u ∙' ap h s) (∘-ap h f p))

  rhs : ap h (s  ap g q) == ap h s  ap (h  g) q
  rhs = ap-∙ h s (ap g q)  (ap  u  ap h s  u) (∘-ap h g q))

  β : ap↓ (ap h) (↓-swap! f g r s t) ==
              lhs  ↓-swap! (h  f) (h  g) (ap h r) (ap h s) (ap↓ (ap h) t  rhs)
  β with a | a' | p | b | b' | q | r | s | t
  β | a | .a | idp | b | .b | idp | r | s | t = coh r s t  where

    T : {x x' : C} (r s : x == x') (t : r == s  idp)  Type _
    T r s t =
      ap (ap h) (∙'-unit-l s  ! (∙-unit-r s)  ! t) ==
      (ap-∙' h idp s  idp)
      
      (∙'-unit-l (ap h s) 
      ! (∙-unit-r (ap h s)) 
      !
      (ap (ap h) t ∙'
        (ap-∙ h s idp  idp)))

    coh' : {x x' : C} {r s : x == x'} (t : r == s)  T r s (t  ! (∙-unit-r s))
    coh' {r = idp} {s = .idp} idp = idp

    coh : {x x' : C} (r s : x == x') (t : r == s  idp)  T r s t
    coh r s t = transport  t  T r s t) (coh2 t (∙-unit-r s)) (coh' (t  ∙-unit-r s))  where

      coh2 :  {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)  (p  q)  ! q == p
      coh2 idp idp = idp


-- module _ {i j k} {A : Type i} {B B' : Type j} {C : Type k} (f : A → C) (g' : B' → B) (g : B → C) where

--   abc : {a a' : A} {p : a == a'} {c c' : B'} {q' : c == c'} {q : g' c == g' c'}
--     (r : f a == g (g' c')) (s : f a' == g (g' c))
--     (t : q == ap g' q')
--     (α : r == s ∙ ap g q [ (λ x → f x == g (g' c')) ↓ p ])
--     → {!(↓-swap! f g r s α ▹ ?) ∙'2ᵈ ?!} == ↓-swap! f (g ∘ g') {p = p} {q = q'} r s (α ▹ ap (λ u → s ∙ u) (ap (ap g) t ∙ ∘-ap g g' q')) 
--   abc = {!!}

{- Functoriality of application and function extensionality -}

∙-app= :  {i j} {A : Type i} {B : A  Type j} {f g h : Π A B}
  (α : f == g) (β : g == h) 
   α  β == λ=  x  app= α x  app= β x)
∙-app= idp β = λ=-η β

∙-λ= :  {i j} {A : Type i} {B : A  Type j} {f g h : Π A B}
  (α : (x : A)  f x == g x) (β : (x : A)  g x == h x) 
   λ= α  λ= β == λ=  x  α x  β x)
∙-λ= α β = ∙-app= (λ= α) (λ= β)
   ap λ= (λ=  x  ap  w  w  app= (λ= β) x) (app=-β α x)
                    ap  w  α x  w) (app=-β β x)))