# Non-Recursive Higher Inductive Types 

Fields Institute, Toronto

## Nicolai Kraus

University of Nottingham

20 May 2016

## Some reasons why HITs are difficult

## type-parametrized, e.g. $\operatorname{Susp}(A)$

recursive path constructors, e.g. $\|A\|_{n}$

## higher path constructors, <br> e.g. the torus $\mathbf{T}^{2}$

inductive-inductive (inductive-recursive),
e.g. syntax of type theory,

Cauchy-Reals
Question: Reduction theorems?
(General theories of HITs: Lumsdaine-Shulman, Sojakova, Dijkstra [see next talk]/Altenkirch-Capriotti-Dijkstra, ...)

## Recursive versus non-recursive HITs


north : $\operatorname{Susp}(A)$
south : $\operatorname{Susp}(A)$
merid : $A \rightarrow$ north $=$ south
universal property $\operatorname{Susp}(A)$

$$
\operatorname{Susp}(A) \rightarrow B
$$

$\Sigma\left(x_{n}, x_{s}: B\right),\left(A \rightarrow x_{n}=x_{s}\right)$
for any $B$
example: $\|A\|$
universal property $\|A\|$

$$
\frac{\|A\| \rightarrow B}{\underline{A \rightarrow B}}
$$

if $B$ is propositional

Recursive path constructors make elimination principles difficult to use!
This talk: my view on the propositional truncation

## $\|A\| \rightarrow B$ is equivalent to $\ldots$

$$
\begin{array}{ll}
\Sigma(f: A \rightarrow B), & \text { if } B \text { is }(-1) \text {-type } \\
\Sigma\left(c: \text { wconst }_{f}\right), & \text { if } B \text { is 0-type } \\
\Sigma\left(d: \operatorname{coh}_{f, c}\right) & \text { if } B \text { is 1-type }
\end{array}
$$

How to do this in general?
note:

$$
\begin{aligned}
& \text { wconst }_{f}: \equiv \Pi_{x, y: A} f x=f y \\
& \operatorname{coh}_{f, c}: \equiv \Pi_{x, y, z: A} c(x, y) \cdot c(y, z)=c(x, z)
\end{aligned}
$$

## Coherently constant functions


$\mathcal{T A}: \Delta_{+}^{\text {op }} \rightarrow$ Type
[0]-coskeleton of $A$
$\mathcal{E B}: \Delta_{+}^{\text {op }} \rightarrow$ Type
Fibrant replacement of $B$

Theorem [K., TYPES 2014 proceedings]
$(\|A\| \rightarrow B) \simeq$ nat. trans. from $\mathcal{T A}$ to $\mathcal{E} B$
in any type theory with $\mathbf{1}, \Sigma, \Pi$, Id, fun.ext., $\|-\|$, Reedy $\omega^{\text {op-limits. }}$

Compare:

* Lurie, Higher Topos Theory, Prop. 6.2.3.4: $\infty$-semitopos
* Rezk, Toposes and Homotopy Toposes, Prop. 7.8: model topos


## Proof sketch: Expanding and Contracting



## About the theorem:

(1) Does Book-HoTT have the required limits? Guess: exactly iff semi-simplicial types are definable!
(2) Does this allow us to construct the propositional truncation with a nice elimination principle?
It would be an "infinite HIT" $A_{\infty}$ with constructors

$$
\begin{aligned}
& f: A \rightarrow A_{\infty} \\
& c: \operatorname{wconst}_{f} \\
& d: \operatorname{coh}_{f, c}
\end{aligned}
$$

Can we construct finite approximations of $A_{\infty}$ ?

HIT $A_{1}$

$$
f: A \rightarrow A_{1}
$$

HIT $A_{3}$

$$
\begin{aligned}
& f: A \rightarrow A_{3} \\
& c: \text { wconst }_{f} \\
& d: \text { coh }_{f, c}
\end{aligned}
$$

HIT $A_{2}$

$$
\begin{aligned}
& f: A \rightarrow A_{2} \\
& c: \text { wconst }_{f}
\end{aligned}
$$

Finally: take the colimit of $A_{1} \rightarrow A_{2} \rightarrow \ldots$

Feature: $A_{n}$ is already correct with respect to ( $n-2$ )-types. Put differently, $\left\|A_{n}\right\|_{n-1} \simeq\|A\|$.
Problem: we can write down every $A_{n}$, but not a family $A: \mathbb{N} \rightarrow \mathcal{U}$ of types.

## Analysis:

* for any two points, $f$ gives two points; $c$ connects them
* for any three points, $f$ and $c$ give an empty triangle; $d$ fills it
* in general, in step $n+1$ : for any $(n+1)$ points in $A$, the previous $n$ constructors give an "empty $n$-dimensional tetrahedron"; the next constructor fills it

My alternative sequence, based on this analysis:

* In step $n+1$ : fill every boundary of an $n$-dimensional tetrahedron.
"filling every $n$-boundary"

$$
=
$$

"take the $n$-pseudo-truncation" ! - write $\{-\}^{n}$

$$
A_{1}: \equiv A
$$

$$
A_{2}: \equiv\left\{A_{1}\right\}^{-1}
$$

$$
A_{n+1}: \equiv\left\{A_{n}\right\}^{n-2}
$$

This works! Additional features:

* It is a sequence of approximations $-\left\|A_{n}\right\|_{n-2} \simeq\|A\|$.
* Side-results for free (characterisation of maps $\|A\|_{n} \rightarrow B$ ).

Comparison: the van Doorn sequence (see previous talk) always uses $\{-\}^{-1}$ :

$$
A_{1}: \equiv A
$$

$$
A_{3}: \equiv\left\{A_{2}\right\}^{-1}
$$

$$
A_{2}: \equiv\left\{A_{1}\right\}^{-1}
$$

$$
A_{n+1}: \equiv\left\{A_{n}\right\}^{-1}
$$

This is much coarser.
Advantage: much simpler to prove correct.
Disadvantage: the finite parts are not well-behaved.

For both sequences, the proof that their colimits are propositional factors through:

## Lemma

Given a sequence $A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \ldots$ If every $f_{i}$ is weakly constant, then the colimit is propositional.

Clearly fulfilled for the van Doorn sequence; much harder for our sequence (note: $X \rightarrow\{X\}^{n}$ is not weakly constant!) Intuition:

* the van Doorn sequence is the coarsest sequence that works;
* the sequence I wanted original is the finest sequence;
* my sequence with $n$-pseudo-truncation is the finest sequence that is definable in Book-HoTT.


## Final remarks

* Can probably find all sorts of constructions of $\|A\|$ with this lemma.
* One more construction (Rijke): $A_{n+1}: \equiv A \star A_{n}$.
* Obvious conjecture: get $n$-truncation if we skip $\{-\}^{i}$ for $i<n$.
* Less obvious conjecture (Rijke): can use my strategy to construct localizations with better properties of "finite initial segments".
* Open question: Can all HITs be represented non-recursively? - probably it does not work for inductive-inductive ones (Cauchy Reals).

