Non-Recursive Higher Inductive Types

Fields Institute, Toronto

Nicolai Kraus

University of Nottingham

20 May 2016

Some reasons why HITs are difficult

type-parametrized, e.g.
$$Susp(A)$$

recursive path constructors, e.g. $\|A\|_n$

higher path constructors, e.g. the torus \boldsymbol{T}^2

inductive-inductive
(inductive-recursive),
e.g. syntax of type theory,
Cauchy-Reals

Question: Reduction theorems?

(General theories of HITs: Lumsdaine-Shulman, Sojakova, Dijkstra [see next talk]/Altenkirch-Capriotti-Dijkstra, ...)

Recursive versus non-recursive HITs

Recursive path constructors make elimination principles difficult to use!

This talk: my view on the propositional truncation

 $||A|| \rightarrow B$ is equivalent to ...

$$\begin{split} \Sigma(f : A \to B), & \text{if } B \text{ is } (-1)\text{-type} \\ \Sigma(c : \text{wconst}_f), & \text{if } B \text{ is } 0\text{-type} \\ \Sigma(d : \text{coh}_{f,c}) & \text{if } B \text{ is } 1\text{-type} \end{split}$$

How to do this in general?

note:

. . .

. . .

wconst_f :=
$$\prod_{x,y:A} fx = fy$$

coh_{f,c} := $\prod_{x,y,z:A} c(x,y) \cdot c(y,z) = c(x,z)$

. . .

Coherently constant functions

Theorem [K., TYPES 2014 proceedings] $(||A|| \rightarrow B) \simeq$ nat. trans. from TA to $\mathcal{E}B$ in any type theory with $\mathbf{1}, \Sigma, \Pi, \mathsf{Id}, \mathsf{fun.ext.}, ||-||,$ Reedy ω^{op} -limits.

Compare:

- ★ Lurie, *Higher Topos Theory*, Prop. 6.2.3.4:
 ∞-semitopos
- * Rezk, *Toposes and Homotopy Toposes*, Prop. 7.8: model topos

Proof sketch: Expanding and Contracting

About the theorem:

(1) Does Book-HoTT have the required limits? Guess: exactly iff semi-simplicial types are definable!

(2) Does this allow us to construct the propositional truncation with a nice elimination principle? It would be an "infinite HIT" A_{∞} with constructors

$$f: A \to A_{\infty}$$

$$c: \text{wconst}_{f}$$

$$d: \text{coh}_{f,c}$$

. . .

Can we construct finite approximations of A_{∞} ?

Feature: A_n is already correct with respect to (n-2)-types. Put differently, $||A_n||_{n-1} \simeq ||A||$. **Problem:** we can write down every A_n , but **not** a family $A : \mathbb{N} \rightarrow \mathcal{U}$ of types.

Analysis:

- $\star\,$ for any two points, f gives two points; c connects them
- * for any three points, f and c give an empty triangle; d fills it
- in general, in step n+1: for any (n+1) points in A, the previous n constructors give an "empty n-dimensional tetrahedron"; the next constructor fills it

My alternative sequence, based on this analysis:

* In step *n* + 1: fill **every** boundary of an *n*-dimensional tetrahedron.

 $A_1 \coloneqq A$

$$A_3 \coloneqq \{A_2\}^0$$

$$A_2 \coloneqq \{A_1\}^{-1}$$

$$A_{n+1} \coloneqq \{A_n\}^{n-2}$$

This works! Additional features:

- * It is a sequence of approximations $\|A_n\|_{n-2} \simeq \|A\|$.
- * Side-results for free (characterisation of maps $||A||_n \rightarrow B$).

Comparison: the van Doorn sequence (see previous talk) *always* uses $\{-\}^{-1}$:

 $A_1 \coloneqq A$

 $A_3 \coloneqq \{A_2\}^{-1}$

$$A_2 := \{A_1\}^{-1}$$

 $A_{n+1} := \{A_n\}^{-1}$

This is much coarser.

Advantage: much simpler to prove correct.

Disadvantage: the finite parts are not well-behaved.

For both sequences, the proof that their colimits are propositional factors through:

Lemma

Given a sequence $A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \dots$

If every f_i is weakly constant, then the colimit is propositional.

Clearly fulfilled for the van Doorn sequence; much harder for our sequence (note: $X \rightarrow \{X\}^n$ is not weakly constant!) Intuition:

- the van Doorn sequence is the coarsest sequence that works;
- * the sequence I wanted original is the finest sequence;
- * my sequence with *n*-pseudo-truncation is the finest sequence that is definable in Book-HoTT.

Final remarks

- * Can probably find all sorts of constructions of ||A|| with this lemma.
- * One more construction (Rijke): $A_{n+1} :\equiv A * A_n$.
- * Obvious conjecture: get *n*-truncation if we skip $\{-\}^i$ for i < n.
- Less obvious conjecture (Rijke): can use my strategy to construct localizations with better properties of "finite initial segments".
- * Open question: Can all HITs be represented non-recursively? – probably it does not work for inductive-inductive ones (Cauchy Reals).