
1

Normalisation

Database Systems Lectures 11-12
Natasha Alechina

In This Lecture

• Idea of normalisation
• Functional dependencies
• Normal forms
• Decompositions

• 2NF, 3NF, BCNF

Functional Dependencies

• Redundancy is often
caused by a functional
dependency

• A functional dependency
(FD) is a link between
two sets of attributes in a
relation

• We can normalise a
relation by removing
undesirable FDs

• A set of attributes, A,
functionally determines
another set, B, or: there
exists a functional
dependency between A
and B (A  B), if
whenever two rows of
the relation have the
same values for all the
attributes in A, then they
also have the same
values for all the
attributes in B.

Example

• {ID, modCode}  {First, Last, modName}
• {modCode}  {modName}
• {ID}  {First, Last}

ID modCode modNameFirst Last

111 G51PRG ProgrammingJoe Bloggs

222 G51DBS DatabasesAnne Smith

FDs and Normalisation

• We define a set of
'normal forms'
• Each normal form has

fewer FDs than the
last

• Since FDs represent
redundancy, each
normal form has less
redundancy than the
last

• Not all FDs cause a
problem
• We identify various

sorts of FD that do
• Each normal form

removes a type of FD
that is a problem

• We will also need a
way to remove FDs

Key attributes and superkeys

• We call an attribute
a key attribute if this
attribute is part of
some candidate key.
Alternative
terminology is
`prime’ attribute.

• We call a set of
attributes a superkey
if it includes a
candidate key (or is
a candidate key).

2

Partial FDs and 2NF

• Partial FDs:
• A FD, A  B is a partial

FD, if some attribute of
A can be removed and
the FD still holds

• Formally, there is some
proper subset of A,

C  A, such that C  B

• Let us call attributes
which are part of some
candidate key, key
attributes, and the rest
non-key attributes.

Second normal form:
• A relation is in second

normal form (2NF) if it is
in 1NF and no non-key
attribute is partially
dependent on a
candidate key

• In other words, no C  B
where C is a strict subset
of a candidate key and B
is a non-key attribute.

Second Normal Form

• 1NF is not in 2NF
• We have the FD
{Module, Text} 

{Lecturer, Dept}

• But also
{Module}  {Lecturer, Dept}

• And so Lecturer and
Dept are partially
dependent on the
primary key

1NF

Module Dept Lecturer Text

M1 D1 L1 T1
M1 D1 L1 T2
M2 D1 L1 T1
M2 D1 L1 T3
M3 D1 L2 T4
M4 D2 L3 T1
M4 D2 L3 T5
M5 D2 L4 T6

Removing FDs

• Suppose we have a
relation R with scheme S
and the FD A  B where
A ∩ B = { }

• Let C = S – (A U B)
• In other words:

• A – attributes on the left
hand side of the FD

• B – attributes on the
right hand side of the FD

• C – all other attributes

• It turns out that we can
split R into two parts:

• R1, with scheme C U A
• R2, with scheme A U B
• The original relation can

be recovered as the
natural join of R1 and
R2:

• R = R1 NATURAL JOIN R2

1NF to 2NF – Example
1NF

Module Dept Lecturer Text

M1 D1 L1 T1
M1 D1 L1 T2
M2 D1 L1 T1
M2 D1 L1 T3
M3 D1 L2 T4
M4 D2 L3 T1
M4 D2 L3 T5
M5 D2 L4 T6

2NFa

Module Dept Lecturer

M1 D1 L1
M2 D1 L1
M3 D1 L2
M4 D2 L3
M5 D2 L4

2NFb

Module Text

M1 T1
M1 T2
M2 T1
M2 T3
M3 T4
M4 T1
M4 T5
M1 T6

A

B

C

A, B where A  B
is the `bad’
dependency –
violating 2NF A, C

Problems Resolved in 2NF

• Problems in 1NF
• INSERT – Can't add a

module with no texts
• UPDATE – To change

lecturer for M1, we
have to change two
rows

• DELETE – If we
remove M3, we
remove L2 as well

• In 2NF the first two
are resolved, but not
the third one

2NFa

Module Dept Lecturer

M1 D1 L1
M2 D1 L1
M3 D1 L2
M4 D2 L3
M5 D2 L4

Problems Remaining in 2NF

• INSERT anomalies
• Can't add lecturers

who teach no modules

• UPDATE anomalies
• To change the

department for L1 we
must alter two rows

• DELETE anomalies
• If we delete M3 we

delete L2 as well

2NFa

Module Dept Lecturer

M1 D1 L1
M2 D1 L1
M3 D1 L2
M4 D2 L3
M5 D2 L4

3

Transitive FDs and 3NF

• Transitive FDs:
• A FD, A  C is a

transitive FD, if there
is some set B such
that A  B and B  C
are non-trivial FDs

• A  B non-trivial
means: B is not a
subset of A

• We have
A  B  C

• Third normal form
• A relation is in third

normal form (3NF) if
it is in 2NF and no
non-key attribute is
transitively dependent
on a candidate key

• Alternative (simpler)
definition: a relation
is in 3NF if in every
non-trivial fd A  B
either B is a key
attribute or A is a
superkey.

Third Normal Form

• 2NFa is not in 3NF
• We have the FDs
{Module}  {Lecturer}
{Lecturer}  {Dept}

• So there is a
transitive FD from the
primary key {Module}
to {Dept}

2NFa

Module Dept Lecturer

M1 D1 L1
M2 D1 L1
M3 D1 L2
M4 D2 L3
M5 D2 L4

2NF to 3NF – Example

2NFa

Module Dept Lecturer

M1 D1 L1
M2 D1 L1
M3 D1 L2
M4 D2 L3
M5 D2 L4

3NFa

Lecturer Dept

L1 D1
L2 D1
L3 D2
L4 D2

3NFb

Module Lecturer

M1 L1
M2 L1
M3 L2
M4 L3
M5 L4

Problems Resolved in 3NF

• Problems in 2NF
• INSERT – Can't add

lecturers who teach
no modules

• UPDATE – To change
the department for L1
we must alter two
rows

• DELETE – If we delete
M3 we delete L2 as
well

• In 3NF all of these are
resolved (for this relation –
but 3NF can still have
anomalies!)

3NFa

Lecturer Dept

L1 D1
L2 D1
L3 D2
L4 D2

3NFb

Module Lecturer

M1 L1
M2 L1
M3 L2
M4 L3
M5 L4

Normalisation so Far

• First normal form
• All data values are

atomic

• Second normal form
• In 1NF plus no non-key

attribute is partially
dependent on a
candidate key

• Third normal form
• In 2NF plus no non-key

attribute depends
transitively on a
candidate key (or, no
dependencies of non-
key on non-superkey)

The Stream Relation

• Consider a relation,
Stream, which stores
information about
times for various
streams of courses

• For example: labs
for first years

• Each course has
several streams

• Only one stream (of
any course at all)
takes place at any
given time

• Each student taking a
course is assigned to
a single stream for it

4

The Stream Relation

Student Course Time

John Databases 12:00
Mary Databases 12:00
Richard Databases 15:00
Richard Programming 10:00
Mary Programming 10:00
Rebecca Programming 13:00

Candidate keys: {Student, Course} and {Student, Time}

FDs in the Stream Relation

• Stream has the
following non-trivial
FDs

• {Student, Course} 
{Time}

• {Time}  {Course}

• Since all attributes are
key attributes, Stream
is in 3NF

Anomalies in Stream

• INSERT anomalies
• You can’t add an

empty stream

• UPDATE anomalies
• Moving the 12:00

class to 9:00 means
changing two rows

• DELETE anomalies
• Deleting Rebecca

removes a stream

Student Course Time

John Databases 12:00
Mary Databases 12:00
Richard Databases 15:00
Richard Programming 10:00
Mary Programming 10:00
Rebecca Programming 13:00

Boyce-Codd Normal Form

• A relation is in Boyce-
Codd normal form
(BCNF) if for every FD A
 B either
• B is contained in A (the

FD is trivial), or
• A contains a candidate

key of the relation,

• In other words: every
determinant in a non-
trivial dependency is a
(super) key.

• The same as 3NF except
in 3NF we only worry
about non-key Bs

• If there is only one
candidate key then 3NF
and BCNF are the same

Stream and BCNF

• Stream is not in
BCNF as the FD
{Time}  {Course}
is non-trivial and
{Time} does not
contain a candidate
key

Student Course Time

John Databases 12:00
Mary Databases 12:00
Richard Databases 15:00
Richard Programming 10:00
Mary Programming 10:00
Rebecca Programming 13:00

Conversion to BCNF

Student Time Course Time

Stream has been put into BCNF but we have lost the FD
{Student, Course}  {Time}

Student Course Time

5

Decomposition Properties

• Lossless: Data should
not be lost or created
when splitting
relations up

• Dependency
preservation: It is
desirable that FDs are
preserved when
splitting relations up

• Normalisation to 3NF
is always lossless and
dependency
preserving

• Normalisation to
BCNF is lossless, but
may not preserve all
dependencies

Higher Normal Forms

• BCNF is as far as we
can go with FDs
• Higher normal forms

are based on other
sorts of dependency

• Fourth normal form
removes multi-valued
dependencies

• Fifth normal form
removes join
dependencies

1NF Relations

2NF Relations

3NF Relations

BCNF Relations

4NF Relations

5NF Relations

Denormalisation

• Normalisation
• Removes data

redundancy
• Solves INSERT,

UPDATE, and DELETE
anomalies

• This makes it easier
to maintain the
information in the
database in a
consistent state

• However
• It leads to more

tables in the database
• Often these need to

be joined back
together, which is
expensive to do

• So sometimes (not
often) it is worth
‘denormalising’

Denormalisation

• You might want to
denormalise if
• Database speeds are

unacceptable (not
just a bit slow)

• There are going to be
very few INSERTs,
UPDATEs, or DELETEs

• There are going to be
lots of SELECTs that
involve the joining of
tables

Number Street PostcodeCity

Address

Not normalised since
{Postcode}  {City}

Number Street Postcode

City

Address1

Postcode

Address2

Lossless decomposition

• To normalise a relation,
we used projections

• If R(A,B,C) satisfies AB
then we can project it on
A,B and A,C without losing
information

• Lossless decomposition:
R = AB(R) ⋈ AC(R)
where AB(R) is projection of

R on AB and ⋈ is natural
join.

• Reminder of projection:

A B C

R

A B

AB(R)

Relational algebra reminder:
selection

A B

R

C D

1 c c
2 y d e
3 z a a
4 u b c
5 w c d

x

A B C D

1 c c
3 z a a

x

C=D(R)

6

Connection to SQL

SELECT A,B

FROM R1, R2, R3

WHERE (some property  holds)

translates into relational algebra

 A,B   (R1R2R3)

Relational algebra reminder:
product

A B

R1

1
2 y

x

A C

1
2 v

w

R2

3 u

A B A C

1 x 1 w
1 x 2 v
1 x 3 u
2 y 1 w
2 y 2 v
2 y 3 u

R1R2

Relational algebra: natural join
R1⋈R2 = R1.A,B,C R1.A = R2.A (R1R2)

A B

R1

1
2 y

x

A C

1
2 v

w

R2

3 u

A B C

1 x w
2 y v

R1 ⋈ R2

When is decomposition lossless:
Module  Lecturer

Module Lecturer Text

DBS nza CB
DBS nza UW
RDB nza UW
APS rcb B

R

Module Lecturer

DBS nza
RDB nza
APS rcb

 Module,LecturerR

Module Text

DBS CB

RDB
UW

APS
UW

 Module,TextR

DBS

B

When is decomposition is not
lossless: no fd

First Age

John Smith 20

S

First Last

John Smith

 First,LastS

First Age

John 20

Mary
30

Tom
20

 First,AgeS

John

10

Last

John Brown 30
Mary Smith 20

Tom Brown 10

John Brown
Mary Smith
Tom Brown

When is decomposition is not
lossless: no fd

First Age

John Smith 20

 First,Last S ⋈  First,Last S

First Last

John Smith

 First,LastS

First Age

John 20

Mary
30

Tom
20

 First,AgeS

John

10

Last

John Brown 30

Mary Smith 20

Tom Brown 10

John Brown
Mary Smith
Tom Brown

John Smith 30
John Brown 20

7

Heath’s theorem

• A relation R(A,B,C) that satisfies a functional
dependency A  B can always be non-loss decomposed
into its projections R1=AB(R) and R2=AC(R).

Proof.

• First we show that R  AB(R) A AC(R). This actually
holds for any relation, does not have to satisfy A  B.

• Assume r R. We need to show r  AB(R) A AC(R).
Since r R, r(A,B)  AB(R) and r(A,C)  AC(R). Since
r(A,B) and r(A,C) have the same value for A, their join
r(A,B,C) = r is in AB(R) A AC(R).

Heath’s theorem

• Now we show that AB(R) A AC(R)  R. This only
holds if R satisfies A  B.

• Assume r  AB(R) A AC(R).
• So, r(A,B)  AB(R) and r(A,C)  AC(R).
• By the definition of projection, if r(A,B)  AB(R), then

there is a tuple s1  R such that s1(A,B) = r(A,B).
Similarly, since r(A,C)  AC(R), there is s2  R such that
s2(A,C) = r(A,C).

• Since s1(A,B) = r(A,B) and s2(A,C) = r(A,C), s1(A) =
s2(A). So because of A  B, s1(B) = s2(B). This means
that s1(A,B,C) = s2(A,B,C) = r and r  R.

Normalisation in exams

• Consider a relation Book with attributes Author, Title,
Publisher, City, Country, Year, ISBN. There are two
candidate keys: ISBN and (Author, Title, Publisher,
Year). City is the place where the book is published, and
there are functional dependencies Publisher → City and
City → Country. Is this relation in 2NF? Explain your
answer. (4 marks)

• Is this relation in 3NF? Explain your answer. (5 marks)

• Is the relation above in BCNF? If not, decompose it to
BCNF and explain why the resulting tables are in BCNF.
(5 marks).

Next Lecture

• Physical DB Issues
• RAID arrays for recovery and speed
• Indexes and query efficiency

• Query optimisation
• Query trees

• For more information
• Connolly and Begg chapter 21 and

appendix C.5, Ullman and Widom 5.2.8

Next Lecture

• More normalisation
• Lossless decomposition; why our reduction

to 2NF and 3NF is lossless
• Boyce-Codd normal form (BCNF)
• Higher normal forms
• Denormalisation

• For more information
• Connolly and Begg chapter 14
• Ullman and Widom chapter 3.6

