SOQL and Java

Database Systems Lecture 19
Natasha Alechina

In this Lecture

e SQL In Java
e SQL from within other Languages
e SQL, Java, and JDBC

e For More Information
e Sun Java tutorial:
http://java.sun.com/docs/books/tutorial/jdbc
e Connolly and Begg 29.7

SQL and Java

SQL and Other Languages

e Combining SQL and e ODBC (Open DB

another language Connectivity) Is a

e Use SQL to run common standard
queries on the e Provides an APl which
database is widely supported

e Use another language = Allows you to pass
(Java, C, etc) to do queries to a database,
the rest of the work: and return the results
e.g. user interface, or to a program
complicated
processing

e Need an interface
between the two

SQL and Java

JDBC

e JDBC is a Java API for database connectivity
e |t is not the same as ODBC but implements a
similar specification
e JDBC enables programmers to write java
applications that
e Connect to a database
e Send queries and update statements to the database

e Retrieve and process the results received from the
database in answer to the query

SQL and Java

JDBC

Jaya Application
JDBC

CHent Machine

I DEBMS -proprietary protocol

_ Database server

\ DBMS ’

SQL and Java

JDBC

e JDBC consists of:

e The JDBC™ API proper: interfaces, classes
and methods for executing SQL
statements, retrieving results, and
propagating changes back to the database

e JDBC Driver Manager: a class that defines
objects which can connect Java
applications to a JDBC driver.

e JDBC Test Suite
- JDBC-ODBC Bridge

SQL and Java

Using JDBC

e Basic steps when using JDBC
e Register a database driver
e Open a connection
e Pass some gueries to the database
e Process the results as needed
e Close the connection
e Deal with any errors

e Preamble: import java.sql.*;

SQL and Java

Register a Driver

e We need to register an appropriate
driver with the DriverManager

e There iIs a different driver for each DBMS
e \WWe’'ll need to use the driver for Oracle:

DriverManager.registerDriver(
new oracle.jdbc.driver.OracleDriver()

)

SQL and Java

Open a Connection

e Next we open a connection to the database
from the DriverManager

e We give the address of the database, a
username and a password

Connection conn = DriverManager.getConnection (
“jdbc:oracle:thin:@oracle.cs.nott.ac.uk:1521:maindb"",
“xxx06u'", “somepassword');

* \
Your Your sqlplus

username password
SQL and Java

Passing Queries to the DB

e Now we can send e Statement objects

queries to the DB - Are created from a

= We do this through a Connection
Statement object e The executeUpdate()

» Each Statement can method runs a query
deal with one query at that doesn’t return
a time any results (UPDATE,

= A single Connection CREATE TABLE, etc)
can have several = executeQuery() is
statements open at used when a result is
any time expected

SQL and Java

Passing Queries to the DB

Statement sttable = conn.createStatement();
sttable.executeUpdate(

“"CREATE TABLE Fruit(Name VARCHAR(10),Amount INT)*
);

sttable.close();

Statement stinsertl = conn.createStatement();
stinsertl.executeUpdate(
"INSERT INTO Fruit VALUES("Apple®, 5)*

)

stinsertl.close();

SQL and Java

Passing Queries to the DB

Statement stinsert2 = conn.createStatement();
stinsert2.executeUpdate(
"INSERT INTO Fruit VALUES(“Pumpkin®, 1)*

)

stinsert2.close();

SQL and Java

Processing Query Results

e When a query
returns a result
e \We use the Statement

e The ResultSet object

e |s essentially a table
e Has a cursor that

object’s executeQuery
method

The results are put in
a ResultSet object

Each Statement can
deal with a single
ResultSet at any one
time

SQL and Java

points to the current
row of data

Initially the cursor is
positioned before the
first row

The next() method
moves to the next
row, and returns false
If there isn’t one

Processing Query Results

Statement stresult = conn.createStatement();
ResultSet fruit = stresult.executeQuery(
“"SELECT * FROM Frumt"

);

while(fruit.next()) {

System.out.printin(
fruit.getString('Name')+ ", " +
fruit.getint(""Amount'));

by

fruit.close();

SQL and Java

Working with ResultSets

e We get values from the ResultSet with
e getint()
e getString()
e getDouble()
e etc.

e Each takes either
e The name of the column as a String, or
e The index of the column as an integer

SQL and Java

Advanced ResultSets

e By default a e \We can change this
ResultSet behaviour so that
e Allows you to go over e We can move forward
the results once, from and backwards
start to finish e We can update
 Allows you to read, existing rows
but not change, the e \We can add rows

iInformation in the

e This is decided when
result

we create the
Statement object
from the Connection

SQL and Java

Creating Statements Again

conn.createStatement(<scroll>, <update>);

e <scroll> iIs one of
e ResultSet.TYPE FORWARD ONLY
e ResultSet.TYPE _SCROLL SENSITIVE

e ResultSet.TYPE_SCROLL_INSENSITIVE

e <update> iIs one of
e ResultSet.CONCUR_READ_ONLY
e ResultSet.CONCUR_UPDATABLE

SQL and Java

Scrollable ResultSets

e |If we use the option
TYPE_SCROLL_SENSITIVE

or
TYPE_SCROLL_INSENSITIVE

e \We can move around
the ResultSets made
from that statement

e There are a lot of
options available for
this

e [For a result set called
rs...

SQL and Java

rs.first(); rs.absolute(l)

rs.absolute(2)

rs.absolute(3)
__/_\

rs.relative(-2)

rs.previous(); rs.relative(-1)

Current row

rs.next(); rs.relative(l)
rs.relative(2)

__/_\

rs.absolute(-3)

rs.absolute(-2)

rs.last(); rs.absolute(-1)

Updating ResultSets

e If we use the option CONCUR_UPDATABLE

e We can update the values in the result set
or add a new row

e In Oracle you can’t have an updatable
forward-only result set

e Also in Oracle you have to explicitly specify
the columns in your SELECT statement if

you want to update it (no SELECT *..)

SQL and Java

Updating a Row

// Make an updatable Statement
Statement result2 = conn.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

ResultSet rset2 = result2.executeQuery(
“"SELECT Name, Amount FROM Fruit");

rset2.absolute(2);// set current row to second
rset2.updatelnt("'Amount™, 3); //

rset2.updateRow(); // updates the second row

SQL and Java

Inserting a Row

// rset2 1s set up as i1n the previous example

// Get ready to insert a row
rset2.moveTolnsertRow();

// Put the values of the new row In each column
rset2.updateString(“Name", “Orange”);
rset2.updatelnt(“Amount", 7);

// Add this row

rset2.i1nsertRow();

// Go back to the row we were at before i1nserting
rset2.moveToCurrentRow();

SQL and Java

Dealing with Errors

e Things can go wrong < If an exception is

with all of this thrown:
e Incorrect SQL e We need to deal with
statements It as best we can
e DBMS might not be e Make sure any
available database objects are
- DBMS might not closed
support some features e |If a connection is left
- If something goes open it can consume

th resources and might
wrong en an interfere with later

SQLEXxception occurs use of the database

SQL and Java

Exception Handling

// Declaration of any database objects
try {
// Some database code
} catch (Exception e) {
// Error reporting etc.
} Tinally {
// Make sure all database objects are
// closed and cleaned up

}

SQL and Java

Closing Objects

e To make sure the
object is closed

e See If the object
exists

e |If It does, call its close
method

e This might throw an
exception itself, which
needs to be caught

e At some stage we
have to stop handling
the exceptions

SQL and Java

Connection conn;
try {

} fil:lé-llly {
iIT (conn = null) {

try {
conn.close();

} catch (...) {
// what to do?
}
)y
ks

That’s It

e If you have revision questions, please
contact me.

SQL and Java

