
SQL and Java

Database Systems Lecture 19
Natasha Alechina

SQL and Java

In this Lecture

• SQL in Java
• SQL from within other Languages
• SQL, Java, and JDBC

• For More Information
• Sun Java tutorial:
http://java.sun.com/docs/books/tutorial/jdbc
• Connolly and Begg 29.7

SQL and Java

SQL and Other Languages

• Combining SQL and
another language
• Use SQL to run

queries on the
database

• Use another language
(Java, C, etc) to do
the rest of the work:
e.g. user interface, or
complicated
processing

• Need an interface
between the two

• ODBC (Open DB
Connectivity) is a
common standard
• Provides an API which

is widely supported
• Allows you to pass

queries to a database,
and return the results
to a program

SQL and Java

JDBC

• JDBC is a Java API for database connectivity
• It is not the same as ODBC but implements a

similar specification
• JDBC enables programmers to write java

applications that
• Connect to a database
• Send queries and update statements to the database
• Retrieve and process the results received from the

database in answer to the query

SQL and Java

JDBC

SQL and Java

JDBC

• JDBC consists of:
• The JDBC™ API proper: interfaces, classes

and methods for executing SQL
statements, retrieving results, and
propagating changes back to the database

• JDBC Driver Manager: a class that defines
objects which can connect Java
applications to a JDBC driver.

• JDBC Test Suite
• JDBC-ODBC Bridge

SQL and Java

Using JDBC

• Basic steps when using JDBC
• Register a database driver
• Open a connection
• Pass some queries to the database
• Process the results as needed
• Close the connection
• Deal with any errors

• Preamble: import java.sql.*;

SQL and Java

Register a Driver

• We need to register an appropriate
driver with the DriverManager
• There is a different driver for each DBMS
• We’ll need to use the driver for Oracle:

DriverManager.registerDriver(
new oracle.jdbc.driver.OracleDriver()

);

SQL and Java

Open a Connection

• Next we open a connection to the database
from the DriverManager
• We give the address of the database, a

username and a password

Connection conn = DriverManager.getConnection (
"jdbc:oracle:thin:@oracle.cs.nott.ac.uk:1521:maindb",
“xxx06u", “somepassword");

Your
username

Your sqlplus
password

SQL and Java

Passing Queries to the DB

• Now we can send
queries to the DB
• We do this through a

Statement object
• Each Statement can

deal with one query at
a time

• A single Connection
can have several
statements open at
any time

• Statement objects
• Are created from a

Connection
• The executeUpdate()

method runs a query
that doesn’t return
any results (UPDATE,
CREATE TABLE, etc)

• executeQuery() is
used when a result is
expected

SQL and Java

Passing Queries to the DB

Statement sttable = conn.createStatement();
sttable.executeUpdate(
"CREATE TABLE Fruit(Name VARCHAR(10),Amount INT)“
);
sttable.close();

Statement stinsert1 = conn.createStatement();
stinsert1.executeUpdate(
"INSERT INTO Fruit VALUES('Apple', 5)“
);
stinsert1.close();

SQL and Java

Passing Queries to the DB

Statement stinsert2 = conn.createStatement();
stinsert2.executeUpdate(
"INSERT INTO Fruit VALUES(‘Pumpkin', 1)“
);
stinsert2.close();

SQL and Java

Processing Query Results

• When a query
returns a result
• We use the Statement

object’s executeQuery
method

• The results are put in
a ResultSet object

• Each Statement can
deal with a single
ResultSet at any one
time

• The ResultSet object
• Is essentially a table
• Has a cursor that

points to the current
row of data

• Initially the cursor is
positioned before the
first row

• The next() method
moves to the next
row, and returns false
if there isn’t one

SQL and Java

Processing Query Results

Statement stresult = conn.createStatement();
ResultSet fruit = stresult.executeQuery(
"SELECT * FROM Fruit"
);
while(fruit.next()) {

System.out.println(
fruit.getString("Name")+ ", " +
fruit.getInt("Amount"));

}
fruit.close();

SQL and Java

Working with ResultSets

• We get values from the ResultSet with
• getInt()
• getString()
• getDouble()
• etc.

• Each takes either
• The name of the column as a String, or
• The index of the column as an integer

SQL and Java

Advanced ResultSets

• By default a
ResultSet
• Allows you to go over

the results once, from
start to finish

• Allows you to read,
but not change, the
information in the
result

• We can change this
behaviour so that
• We can move forward

and backwards
• We can update

existing rows
• We can add rows
• This is decided when

we create the
Statement object
from the Connection

SQL and Java

Creating Statements Again

conn.createStatement(<scroll>, <update>);
• <scroll> is one of

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_SENSITIVE
• ResultSet.TYPE_SCROLL_INSENSITIVE

• <update> is one of
• ResultSet.CONCUR_READ_ONLY
• ResultSet.CONCUR_UPDATABLE

SQL and Java

Scrollable ResultSets

• If we use the option
TYPE_SCROLL_SENSITIVE

or
TYPE_SCROLL_INSENSITIVE

• We can move around
the ResultSets made
from that statement

• There are a lot of
options available for
this

• For a result set called
rs…

Current row
rs.previous(); rs.relative(-1)

rs.next(); rs.relative(1)

rs.absolute(-2)
rs.absolute(-3)

rs.last(); rs.absolute(-1)

rs.absolute(2)
rs.first(); rs.absolute(1)

rs.absolute(3)

rs.relative(-2)

rs.relative(2)

SQL and Java

Updating ResultSets

• If we use the option CONCUR_UPDATABLE
• We can update the values in the result set

or add a new row
• In Oracle you can’t have an updatable

forward-only result set
• Also in Oracle you have to explicitly specify

the columns in your SELECT statement if
you want to update it (no SELECT *…)

SQL and Java

Updating a Row

// Make an updatable Statement
Statement result2 = conn.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rset2 = result2.executeQuery(
"SELECT Name, Amount FROM Fruit");
rset2.absolute(2);// set current row to second
rset2.updateInt("Amount", 3); //
rset2.updateRow(); // updates the second row

SQL and Java

Inserting a Row

// rset2 is set up as in the previous example
// Get ready to insert a row
rset2.moveToInsertRow();
// Put the values of the new row in each column
rset2.updateString(“Name", “Orange”);
rset2.updateInt(“Amount", 7);
// Add this row
rset2.insertRow();
// Go back to the row we were at before inserting
rset2.moveToCurrentRow();

SQL and Java

Dealing with Errors

• Things can go wrong
with all of this
• Incorrect SQL

statements
• DBMS might not be

available
• DBMS might not

support some features

• If something goes
wrong then an
SQLException occurs

• If an exception is
thrown:
• We need to deal with

it as best we can
• Make sure any

database objects are
closed

• If a connection is left
open it can consume
resources and might
interfere with later
use of the database

SQL and Java

Exception Handling

// Declaration of any database objects
try {

// Some database code
} catch (Exception e) {

// Error reporting etc.
} finally {

// Make sure all database objects are
// closed and cleaned up

}

SQL and Java

Closing Objects

• To make sure the
object is closed
• See if the object

exists
• If it does, call its close

method
• This might throw an

exception itself, which
needs to be caught

• At some stage we
have to stop handling
the exceptions

Connection conn;
try {

...
} finally {

if (conn != null) {
try {

conn.close();
} catch (...) {

// what to do?
}

}
}

SQL and Java

That’s it

• If you have revision questions, please
contact me.

