
Planning and Search

Mock exam answers 1-3

Mock exam answers 1-3 1

Reminder of exam format

4 questions out of 6

Two hours

Mock exam answers 1-3 2

Question 1

1.

(a) Explain A∗ search algorithm (give pseudocode) (10 marks)

(b) What is an admissible heuristic? Give an example.(5 marks)

(c) What is a consistent heuristic? Give an example. (5 marks)

(d) Give an example of a search problem and an admissible heuristic where
a graph search using A∗ is not optimal (does not return the best solution).
(5 marks)

Mock exam answers 1-3 3

Question 1a

Explain A∗ search algorithm (give pseudocode) (10 marks)

A∗ uses a heuristic function h and expands the nodes in the order of their
evaluation function (best first):

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

Mock exam answers 1-3 4

Question 1a

Pseudocode for the tree search A∗ might look like this:

function Tree-Search-A∗(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

/* maintain the fringe in the increasing order of f(n) */

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)

Mock exam answers 1-3 5

Question 1a

For the graph search A∗, we also check if we have already seen the same
state before:

function Graph-Search-A∗(problem, fringe) returns a solution, or failure

closed← an empty set

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

/* maintain the fringe in the increasing order of f(n) */

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)

end

Mock exam answers 1-3 6

Question 1b

(b) What is an admissible heuristic? Give an example.(5 marks)

Answer. An admissible heuristic is one that never overestimates the true cost
of reaching the goal.

Typical example is a straight line distance for path finding problems.

(Not required by the question but just for interest: admissible but not consis-
tent heuristic. Suppose we get a list of railway standard ticket prices between
the cities and use it as a heuristic to estimate distances (for example, assum-
ing that 1 kilometer costs 100 pounds - very expensive to make it admissible,
giving us very few kilometers between cities).

Mock exam answers 1-3 7

Question 1c

(c) What is a consistent heuristic? Give an example. (5 marks)

Answer. A heuristic is consistent if the estimate at the current node is
at most the cost of the next step plus the estimate from there: h(n) ≤
cost(n, n′) + h(n′).

Mock exam answers 1-3 8

Question 1d

Give an example of a search problem and an admissible heuristic where a
graph search using A∗ is not optimal (does not return the best solution). (5
marks)

Answer.h(S) = 7, cost(S,B) = 2, cost(S,A) = 4, h(B) = 5, h(A) = 1,
cost(B,A) = 1, cost(A,G) = 4, h(G) = 0. f(A) = 5 and f(B) = 7.

7 = h(S) 6≤ cost(S,A) + h(A) = 4 + 1

5 = h(B) 6≤ cost(B,A) + h(A) = 1 + 1

A will be expanded first, and the path through B which is cheaper will be
discarded because A will be already in the closed list.

Mock exam answers 1-3 9

Mock exam answers 1-3 10

Question 2

(a) Explain the difference between state-space search algorithms and local
search. What is the main reason for using local search? (5 marks)

(b)Explain hill climbing search (give pseudocode) (10 marks)

(c) Assume that the local search problem is to produce a natural number
which is greater than 41 and is divisible by 5. The only way to generate
successors is to add 1 or subtract 1 from the current state. Design an
objective function for this problem. (5 marks)

(d) Explain the problem of ‘getting trapped in local maxima’ on the example
from part (b) (an example of a ‘local plateau’ would do as well). How does
stochastic hill climbing attempts to solve this problem? (5 marks)

Mock exam answers 1-3 11

Question 2a

Explain the difference between state-space search algorithms and local search.
What is the main reason for using local search? (5 marks)

Answer. State-space search produces an expanding tree (or some other
growing collection) of states, while local search manipulates a single state or
a fixed number of states; the advantage of the latter is that it requires a lot
less (and fixed size) space.

Mock exam answers 1-3 12

Question 2b

Explain hill climbing search (give pseudocode) (10 marks)

Answer. In the real exam you will have a choice of using an English
description.

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]

current←neighbor

end

Mock exam answers 1-3 13

Question 2c

Assume that the local search problem is to produce a natural number which
is greater than 41 and is divisible by 5. The only way to generate successors
is to add 1 or subtract 1 from the current state. Design an objective function
for this problem. (5 marks)

Answer. The one I came up with is to take into account the difference
between 41 and the current solution if it is smaller than 41 (max(0, 41−x)),
and the remainer of division by 5 (x mod 5). The smaller these numbers, the
better the solution. So the function is f(x) = −(max(0, 41−x)+x mod 5).
Must be possible to do better, but this kind of thing will get you full marks.

Mock exam answers 1-3 14

Question 2d

Explain the problem of ‘getting trapped in local maxima’ on the example
from part (b) (an example of a ‘local plateau’ would do as well). How does
stochastic hill climbing attempts to solve this problem? (5 marks)

Answer. The problem is when the solution is not found, but all succes-
sors of the current solution are worse (local maximum) or no better (local
plateau). So the algorithm terminates without finding the solution. Stochas-
tic hill climbing allows selecting a successor at random, which may help es-
cape local maxima. With the function above, consider:
f(20) = −(21 + 0) = −21
f(21) = −(20 + 1) = −21
f(22) = −(19 + 2) = −21
so when x = 21, both successors (x + 1 and x− 1) have the same value of
the objective function: x is on a local plateau.

Mock exam answers 1-3 15

Question 3

3 (a) Express the following problem in propositional logic:

I want to invite some of the following people to a party: Alice, Ben,
Chris and Dave. If I invite Alice, I would also have to invite Ben.
I cannot invite Ben and Chris to the same party. I want to invite at
least three of them (this condition you also need to express as a logical
formula). (7 marks)

(b) Rewrite the formulas above in CNF (hint: the last condition, about
inviting at least three people, is a bit of a pain to rewrite to CNF if you
express it in the obvious way to begin with. It may be easier to work with
an equivalent condition, ‘I do not want to exclude any two of them from the
party’). (8 marks)

(c) Trace DPLL algorithm on the resulting set of clauses. Point out pure
symbols and unit clauses at each iteration. (10 marks)

Mock exam answers 1-3 16

Question 3a

I want to invite some of the following people to a party: Alice, Ben,
Chris and Dave. If I invite Alice, I would also have to invite Ben.
I cannot invite Ben and Chris to the same party. I want to invite at
least three of them (this condition you also need to express as a logical
formula). (7 marks)

Answer. Let A stand for inviting Alice and so on.

S1 A⇒ B (if invite Alice, then also invite Ben)

S2 ¬(B ∧ C) (cannot invite Ben and Chris at the same time)

At least three of them: we can write this as

(A ∧B ∧ C) ∨ (A ∧B ∧D) ∨ (A ∧ C ∧D) ∨ (B ∧ C ∧D)

which is more natural.

Mock exam answers 1-3 17

However, it is also possible to say that we do not any two of them to be
uninvited:

S3

¬(¬A∧¬B)∧¬(¬A∧¬C)∧¬(¬A∧¬D)∧¬(¬B∧¬C)∧¬(¬B∧¬D)∧¬(¬C∧¬D)

Mock exam answers 1-3 18

Question 3b

Rewrite the formulas above in CNF (hint: the last condition, about inviting
at least three people, is a bit of a pain to rewrite to CNF if you express it in
the obvious way to begin with. It may be easier to work with an equivalent
condition, ‘I do not want to exclude any two of them from the party’). (8
marks)

C1 ¬A ∨B clause [¬A,B]

C2 ¬B ∨ ¬C clause [¬B,¬C]

C3 ¬(¬A ∧ ¬B) = A ∨B clause [A,B]

similarly, a clause for every pair from A,B,C,D: [A,B], [A,C], [A,D],
[B,C], [B,D], [C,D]

Mock exam answers 1-3 19

Question 3c

Trace DPLL algorithm on the resulting set of clauses. Point out pure symbols
and unit clauses at each iteration. (10 marks)

Answer.

Pure symbol heuristic: pure symbol is a symbol which occurs in all clauses
with the same sign (for example only as ¬A). If a sentence has a model, then
it has a model where pure symbols are assigned so as to make their literals
true (for example A is assigned false). This is the value which this heuristic
assigns to the symbol. Purity is recalculated as some clauses become true
and can be ignored (so purity is defined relative to the set of remaining
clauses)

Unit clause heuristic: unit clause is a clause with only one literal. In DPLL,
it is a clause where only one symbol is yet unassigned. Unit clauses also have
obvious assignment (for example for {¬A} to be true we have to assign false
to A. This is the value which this heuristic assigns to the symbol.

Mock exam answers 1-3 20

function DPLL-Satisfiable?(s) returns true or false

inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s

return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols,model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value←Find-Pure-Symbol(symbols, clauses,model)

if P is non-null then return DPLL(clauses, symbols–P, [P = value|model])

P, value←Find-Unit-Clause(clauses,model)

if P is non-null then return DPLL(clauses, symbols–P, [P = value|model])

P←First(symbols); rest←Rest(symbols)

return DPLL(clauses, rest, [P = true|model]) or DPLL(clauses, rest, [P =

false|model])

Mock exam answers 1-3 21

Question 3c

Initial clauses: [¬A,B], [¬B,¬C], [A,B], [A,C], [A,D], [B,C], [B,D],
[C,D]

Initial symbols: A,B,C,D

Pure symbol: D. Assign true to D. The clauses where D occurs also
become true, so we skip them.

Next clauses: [¬A,B], [¬B,¬C], [A,B], [A,C], [B,C]. Model: D = true

Next symbols: A,B,C

No pure symbol, no unit clause. First symbol is A. Need to call DPLL for
A = true,D = true and A = false,D = true. Start with the first one
(A = true).

Skip the clauses where A occurs because they are true, and remove ¬A from
clauses where it occurs (because it is false).

Mock exam answers 1-3 22

Next clauses: [B], [¬B,¬C], [B,C]. Model: A = true,D = true

Next symbols: B,C

No pure symbols.

Unit clause: [B]. Set B to true. Same as before: remove clauses where B

occurs positively, and remove ¬B from clauses.

Next clauses: [¬C]. Model: B = true, A = true,D = true.

Unit clause: [¬C]. Assign false to C. Model: C = true, B = true, A =
true,D = true.

Return true (all clauses true).

Mock exam answers 1-3 23

