Knowledge representation and reasoning
Lecture 1: Introduction

Natasha Alechina
natasha.alechina@nottingham.ac.uk
Plan of the lecture

1. Admin
2. What is this module about
3. Examples of knowledge-based systems
4. Plan of the module
Essential module information

- 2 lectures a week
- 100 % exam
- Lecture 1: Monday 15:00-16:00 in JBSouth A25
- Lecture 2: Thursday 17:00-18:00 in JC-EXCHGE-B.LT1
- Office hour (to discuss informal coursework and any other module questions) in my office C57, time to be confirmed when the timetable settles
More module information

- Previous exam papers and answers are on the web, as well as informal exercises and answers
- webpage: http://www.cs.nott.ac.uk/~psznza/G53KRR
- note that this module had different convenors and content in 2014-15 and 2015-16
- textbook:
- my web page has a link to Levesque’s lecture slides; I will be mostly using a board, so prepare to take notes!
What is this module about

- **How can knowledge be represented symbolically and manipulated in an automated way by reasoning programs**
- **Knowledge**: some information about the world
 - medical information about some particular set of diseases: what causes them, how to diagnose them
 - geographical data: which city is the capital of which country, population statistics, . . .
 - common sense physics: bodies cannot go through solid walls, . . .
- **Representation**: how / in which language do we represent this information
- **Reasoning**: how to extract more information from what is explicitly represented (because we cannot represent every single fact explicitly as in a database)
What is this module about

Knowledge-based systems

- We want to be able to talk about some AI programs in terms of what they ‘know’
 - (which corresponds to taking ‘intentional stance’ towards those systems, ascribing them human characteristics - for why this may be useful, see Daniel Dennett)

- ... and not just talk about what they know but also have something to point to in those systems corresponding to ‘knowledge’ and determining their behaviour, namely explicitly represented symbolic knowledge
What is this module about

Example (Brachman and Levesque)

Two Prolog programs with identical behaviour:
\[
\begin{align*}
\text{printColour(snow)} &: \text{ !, write("It’s white.").} \\
\text{printColour(grass)} &: \text{ !, write("It’s green.").} \\
\text{printColour(sky)} &: \text{ !, write("It’s yellow.").} \\
\text{printColour(X)} &: \text{ !, write("Beats me.").}
\end{align*}
\]

and
\[
\begin{align*}
\text{printColour(X)} &: \text{ colour(X,Y), !, write("It’s "), write(Y), write(".").} \\
\text{printColour(X)} &: \text{ write("Beats me.").} \\
\text{colour(snow, white).} \\
\text{colour(sky, yellow).} \\
\text{colour(X,Y) : - madeof(X,Z), colour(Z,Y).} \\
\text{madeof(grass, vegetation).} \\
\text{colour(vegetation, green).}
\end{align*}
\]
Which one is knowledge-based

- Only the second program has explicit representation of ‘knowledge’ that snow is white.
- The second program does what it does when asked for the colour of snow because of this knowledge. When `colour(snow, white)` is removed, it will not print the right colour for snow.
- What makes the system knowledge-based is not:
 - the use of a particular logical-looking language like Prolog
 - or having representation of true facts (`colour(sky, yellow)` is not)
 - or having lots of facts, or having a complex structure
- Rather, it is having explicit representation of knowledge which is used in the operation of the program.
Definition of knowledge-based systems and knowledge bases

- Knowledge-based systems are systems for which intentional stance is grounded by design in symbolic representation.
- The symbolic representation of knowledge is called a knowledge base.
Examples of knowledge-based systems

- Various expert systems
 - MYCIN (1970s, Stanford University)
 - XCON (1978, Carnegie Mellon University)
- Perhaps most famous knowledge base: CYC (1980s, Douglas Lenat, Cycorp, Austin, Texas)

- Ontologies
 - Snomed CT http://snomed.dataline.co.uk/

- NHS Choices symptom-checker

- Is Watson a knowledge-based system?
Examples of knowledge-based systems

MYCIN

- 1970s, Stanford University (Edward Shortliffe, Pat Buchanan)
- Production rule system (we will see them later in the course)
- Purpose: automatic diagnosis of bacterial infections
- Lots of interviews with experts on infectious diseases, translated into rules (knowledge acquisition is a non-trivial process; also see later in the course)
- Approximately 500 rules
Examples of knowledge-based systems

Example MYCIN rule

Rule in LISP:

RULE035

PREMISE: ($ AND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

English translation:

IF:

1. the gram stain of the organism is gramneg, and
2. the morphology of the organism is rod, and
3. the aerobicity of the organism is anaerobic

THEN: There is suggestive evidence (.6) that the identity of the organism is bacteroides
Some facts and some conclusions of the rules (as above) are not absolutely certain.

Mycin uses numerical certainty factors; range between -1 and 1.

(Reasonably involved) rules for combining certainty factors of premises, with the number in the rule (as 0.6 above) into a certainty factor for the conclusions.

Later it turned out that Mycin’s recommendations would have been the same if it used only 4 values for certainty factors.

Mycin was never used in practice (ethical and legal issues).

When tested on real cases, did as well or better than the members of the Stanford medical school.
XCON

- John McDermott, CMU, 1978
- eXpert CONfigurer - system for configuring VAX computers
- production rule system, written using OPS5 (language for production systems, implemented in LISP)
- 10,000 rules
- used commercially
Cyc

- The Cyc Knowledge Server is a very large knowledge base and inference engine
- Developed by Cycorp: http://www.cyc.com/
- It aims to provide a deep layer of ‘common sense knowledge’, to be used by other knowledge-intensive programs
Cyc knowledge base

- Contains terms and assertions in formal language CycL, based on first-order logic, syntax similar to LISP
- Knowledge base contains classification of things (starting with the most general category: Thing), and also facts, rules of thumb, heuristics for reasoning about everyday objects
- Currently, over 200,000 terms, and many human-entered assertions involving each term; Cyc can derive new assertions from those
- Divided in thousands of ‘microtheories’
Cyc knowledge base

- General knowledge: things, intangible things, physical objects, individuals, collections, sets, relations...
- Domain-specific knowledge, for example:
 - Political geography: general information (e.g. What is a border?) and specific information about towns, cities, countries and international organizations
 - Human anatomy and physiology
 - Chemistry
 - lots of others - see Cycorp web page
Snomed

- **Snomed CT**: Systematized Nomenclature of Medicine Clinical Terms
- Developed by College of American Pathologists and the NHS
- Clinical terminology (with formal definitions)
- Designed for unambiguous recording of data and interoperability with software applications
- Uses ontology language (different from first order logic) EL++
- Approx. 400,000 concepts, 1 million terms and 1.6 million relationships
Snomed: example

Concept: 32553006 - Hangover

Descriptions:

Synonym: hangover effect
Synonym: hangover from alcohol

Relationships:

(is a) 228273003 - Finding relating to alcohol drinking behavior
(causative agent) 311492009 - Ingestible alcohol
Examples of knowledge-based systems

NHS Choices symptom-checker

- no longer available unfortunately
- uses decision trees
- asks questions and then produces relevant information and advice to go to Emergency, or to see a nurse (or may be sometimes do nothing)
- correctly identified emergency and urgent conditions in 87% of cases but was too risk averse (study published in the British Medical Journal in 2015)
Examples of knowledge-based systems

NHS Choices

General assessment

Please select the general area of concern
Some symptoms are covered by more than one health and symptom checker, so please select the option which is the closest match to your symptoms or enquiry:

- Rashes or skin problems [Help]
- Male or female sexual or genital health or contraception advice [Help]
- Pregnancy problems [Help]

Previous answers
1. What do you need help with?
 You have symptoms that are concerning you
Examples of knowledge-based systems

NHS Choices

General assessment

Skin problems
Select the option that best matches your enquiry and answer the questions which follow:

- Bites and stings [Help]
- Burns and scalds [Help]
- Wounds [Help]
- Rashes and skin problems [Help]

Previous answers
1. What do you need help with?
You have symptoms that are concerning you

2. Please select the general area of concern
Skin

Previous Next
Examples of knowledge-based systems

NHS Choices

See your practice nurse or GP today

Your answers suggest you need to make an appointment to see your practice nurse or GP today.

If your surgery is closed you should follow their instructions for contacting the emergency doctor.

Or you may choose to go to a walk-in centre or minor injuries unit instead.

If you have any further concerns or your symptoms change or get worse before you see a healthcare professional, please call NHS 111 for a further assessment by dialling 111.

Please review your answers before making an appointment.

As well as seeing a healthcare professional, please read the information on the next page which you may find helpful. You don’t need to see a healthcare professional before following this advice.
Is Watson a knowledge-based system?
Examples of knowledge-based systems

Watson

- developed at IBM by a team led by David Ferrucci
- question answering system (originally developed to play Jeopardy)
- has access to terabytes of data (all Wikipedia pages, other encyclopedias)
- mostly uses statistical correlation methods in plain English text to find answers to questions such as, which city has airports named after a WWII hero and a WWII battle
- assuming (not true really) this is *all* that Watson does – is it a knowledge based system?
Examples of knowledge-based systems

Winograd Schema Challenge

- Hector Levesque (2013): Winograd Schema Challenge (to replace Turing test)
- Requires understanding the meaning of language vs exploiting statistical correlations
- Examples:
 - The trophy would not fit in the brown suitcase because it was too big. What was too big?
 1. the trophy
 2. the suitcase
 - Joan made sure to thank Susan for all the help she had given. Who had given the help?
 1. Joan
 2. Susan
Examples of knowledge-based systems

Final year project in 2013/14

- successful individual project by George Hallam in 2013/14 to answer some types of Winograd schema questions
- represented knowledge about fitting things in containers etc.
- used first order reasoning (resolution) to produce answers
Plan of the module

- First order logic (3 lectures)
- Expressing knowledge (1 lecture)
- Resolution (4 lectures)
- Horn clauses, backward chaining, forward chaining
- Rules in production systems
- How to build a knowledge based system
- Description logic
- Defaults/non-monotonic reasoning
- Uncertainty/bayesian networks
Recommended reading for the next lecture

- Brachman and Levesque, chapter 2 (The language of first-order logic).