Plan of the lecture

- Logical implication for functional dependencies
- Armstrong closure. Algorithm for computing the closure
- Inference rules for functional dependencies
- Soundness and completeness of the inference rules
- Inference rules for functional and multivalued dependencies
- Examples of derivations

Implication problem for fds

- In order to normalise a relation, we need to check lots of dependencies (for example, find all functional dependencies and check if in any of them determinant is not a key).
- If we had a way to generate all dependencies implied by certain other dependencies, we could save ourselves some work.
- For example, if we know that X → Y implies Z → W and we know that Z → W does not hold, then we don’t need to check whether X → Y holds.

Logical consequence (implication)

- Let Σ be a set of functional dependencies over a set of attributes U, and X → Y a functional dependency involving attributes from the same set (X,Y ⊆ U).
- X → Y is a logical consequence of Σ, or Σ logically implies X → Y, if any relation over attributes in U which satisfies functional dependencies in Σ, also satisfies X → Y.
- In symbols: ‘Σ logically implies X → Y’ is denoted as Σ |= X → Y.

Logical consequence: example

- Let
 - U = {Name, Age, CanVote},
 - Σ = {Name → Age, Age → CanVote}
 - X → Y = Name → CanVote

then Σ |= X → Y.

Logical consequence: example

- Proof: consider any relation R over U. Assume that it satisfies both dependencies in Σ. So, for any two tuples s and t in R,
 - if s(Name)=t(Name), then s(Age) = t(Age)
 (because R satisfies Name → Age)
 - if s(Age) = t(Age), then s(CanVote)=t(CanVote)
 (because R satisfies Age → CanVote)
- so for any two tuples s and t in R,
 - if s(Name)=t(Name), then s(CanVote)=t(CanVote)
 (hence R satisfies Name → CanVote)
Transitivity

• In exactly the same way, we can prove that in general,
 \(\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z \)
• That is, for any relation \(R \) whose schema includes \(X, Y \) and \(Z \), it holds that if \(R \) satisfies \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(R \) satisfies \(X \rightarrow Z \).

Armstrong closure

• Given a set of functional dependencies \(\Sigma \) over a set of attributes \(U \), \textit{fd closure} \(X^* \) of \(X \subseteq U \) is defined as follows:
 \[X^* = \{ A \in U: \Sigma \models X \rightarrow A \} \]
• Why is it a useful concept? By definition,
 \[\Sigma \models X \rightarrow Y \text{ if, and only if, } Y \subseteq X^* \]
• So we can test whether \(\Sigma \models X \rightarrow Y \) by computing \(X^* \).
• There is a linear time algorithm to compute \(X^* \); here is a simpler, less efficient version – it is \(O(n \times m) \), where \(n \) is the size of \(\Sigma \) and \(m \) is the size of \(X \).

Algorithm to compute fd closure

• Input: a set of functional dependencies \(\Sigma \) over some set of attributes \(U \) and a set \(X \subseteq U \) of attributes.
• Output: the closure \(X^* \) of \(X \) with respect to \(\Sigma \).

\[
\begin{align*}
\text{unused} & = \Sigma ; \\
\text{closure} & = X ; \\
\text{repeat until no further change:} \\
\quad \text{if } W \rightarrow Z \in \text{unused and } W \subseteq \text{closure} \text{ then} \\
\quad \quad \text{unused} = \text{unused} \setminus \{W \rightarrow Z\}; \\
\quad \text{closure} = \text{closure} \cup Z \\
\text{output closure}
\end{align*}
\]

Correctness of the closure algorithm

• To prove: if \(\Sigma \models X \rightarrow Y \), then \(Y \subseteq X^* \) (as computed by the algorithm).
• Proof: there are two things to prove.
 – one is that the closure algorithm does not claim too much, that is, if \(Y \subseteq X^* \) then \(\Sigma \models X \rightarrow Y \).
 – another is that it does not fail to discover dependencies: if \(\Sigma \models X \rightarrow Y \), then \(Y \subseteq X^* \).
Counterexample

<table>
<thead>
<tr>
<th>R</th>
<th>X*</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>X_{i1},...,X_{in}, Y_{i1},...,Y_{ik}, Z_{i1},...,Z_{im}</code></td>
<td><code>a_{i1},...,a_{in}, b_{i1},...,b_{ik}, c_{i1},...,c_{im}, d_{i1},...,d_{im}</code></td>
</tr>
</tbody>
</table>

The idea is that \(X = \{X_{1},...,X_{n}\} \), \(X^{*} = \{X_{1},...,X_{n}, Y_{1},...,Y_{k}\} \), two tuples \(s \) and \(t \) agree on \(X^{*} \) and disagree on \(Z \). Clearly \(R \) does not satisfy \(X \rightarrow Z \) if some of \(Z \)'s attributes are among \(Z_{i} \). Let us show that \(R \) satisfies \(\Sigma \). Assume otherwise: there is \(W \rightarrow V \) in \(\Sigma \) such that \(R \) does not satisfy it. So \(s \) and \(t \) agree on \(W \) (so \(W \subseteq X^{*} \)) and disagree on \(V \) (so \(V \) is not a subset of \(X^{*} \)). But if \(W \subseteq X^{*} \) and \(W \rightarrow V \) in \(\Sigma \), then by construction of \(X^{*} \), also \(V \) should be in \(X^{*} \), a contradiction.

Inference rules for fds

- The following rules are due to Armstrong (1974):
 - Let \(X,Y,Z \) be sets of attributes of some relation \(R \). Then
 - FD1 (reflexivity): if \(Y \subseteq X \) then \(X \rightarrow Y \)
 - FD2 (augmentation): if \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)
 - FD3 (transitivity): if \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)
 - Here, \(XZ \) is short for \(X \cup Z \).

Derivability

- Let \(\Sigma \) be a set of functional dependencies over a set of attributes \(U \), and \(X \rightarrow Y \) a functional dependency involving attributes from the same set.
- \(X \rightarrow Y \) is derivable from \(\Sigma \) (by inference rules FD1-FD3) if we can obtain \(X \rightarrow Y \) by applying inference rules to dependencies in \(\Sigma \) (or, if there is a finite sequence of dependencies, each of which is either in \(\Sigma \), or obtained from the previous dependencies by FD1-FD3).
- In symbols: \(\Sigma \models X \rightarrow Y \) is denoted as \(\Sigma \models X \rightarrow Y \).

Example

- Let \(A,B,C,D,E \) be attributes and
 \[\Sigma = \{ A \rightarrow B, B \rightarrow C, CD \rightarrow E \} \]
- Then \(\Sigma \models AD \rightarrow E \):
 - \(A \rightarrow C \) from \(A \rightarrow B \) and \(B \rightarrow C \) by FD3
 - \(AD \rightarrow CD \) from \(A \rightarrow C \) by FD2
 - \(AD \rightarrow E \) from \(AD \rightarrow CD \) and \(CD \rightarrow E \) by FD3

Soundness and completeness

- Armstrong’s rules are sound: we can never derive dependencies which do not hold:
 - if \(\Sigma \models X \rightarrow Y \) then \(\Sigma \models X \rightarrow Y \).
- Armstrong’s rules are complete: if a dependency \(X \rightarrow Y \) is a logical consequence of \(\Sigma \), then we can derive \(X \rightarrow Y \) from \(\Sigma \):
 - if \(\Sigma \models X \rightarrow Y \) then \(\Sigma \models X \rightarrow Y \).

Proof of soundness

- The proof is by induction on the length of the derivation (the number of rule applications). We show that at each step in deriving \(X \rightarrow Y \) from \(\Sigma \), by applying FD1-FD3 we only obtain logical consequences.
 - FD1 (reflexivity): if \(Y \subseteq X \) then \(X \rightarrow Y \).
 - Take any relation \(R \). We want to show that for any two tuples \(s \) and \(t \) in \(R \), if \(s(X) = t(X) \), then \(s(Y) = t(Y) \).
 - Suppose \(s(X) = t(X) \). We know that \(Y \subseteq X \), so if \(s \) and \(t \) agree on all attributes in \(X \), then they agree on all attributes in \(Y \). So \(s(Y) = t(Y) \).
Proof of soundness

• FD2 (augmentation): if \(X \rightarrow Y \) then \(XZ \rightarrow YZ \).
• Take any relation \(R \) which satisfies \(X \rightarrow Y \). We want to show that for any two tuples \(s \) and \(t \) in \(R \), if \(s(XZ)=t(XZ) \), then \(s(YZ)=t(YZ) \).
• Assume \(s(XZ)=t(XZ) \). This is the same as \(s(X)=t(X) \) and \(s(Z)=t(Z) \).
• Since \(R \) satisfies \(X \rightarrow Y \), from \(s(X)=t(X) \) we get \(s(Y)=t(Y) \).
• We know that \(s(Y)=t(Y) \) and \(s(Z)=t(Z) \), so \(s(YZ)=t(YZ) \).

Proof of soundness

• FD3 (transitivity): if \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \).
• Really the same as our example of logical consequence.
• Take any relation \(R \) which satisfies \(X \rightarrow Y \) and \(Y \rightarrow Z \).
• We want to show that for any two tuples \(s \) and \(t \) in \(R \), if \(s(X)=t(X) \), then \(s(Z)=t(Z) \).
• Assume \(s(X)=t(X) \). Then by \(X \rightarrow Y \), \(s(Y)=t(Y) \).
• Then by \(Y \rightarrow Z \), \(s(Z)=t(Z) \).

Proof of completeness

• To show that if a dependency \(X \rightarrow Y \) follows from \(\Sigma \), then it is also derivable from \(\Sigma \) using the axioms; in other words, \(\Sigma \models X \rightarrow Y \) implies \(\Sigma \models X \rightarrow Y \): The proof consists of two parts:
• \(\Sigma \models X \rightarrow X^* (\Sigma \text{ implies a functional dependency between } X \text{ and the set of all attributes in the closure of } X \text{ with respect to } \Sigma) \).
• If \(\Sigma \models X \rightarrow Y \), then \(Y \subseteq X^* \). From \(X \rightarrow X^* \) and \(Y \subseteq X^* \) we can derive \(X \rightarrow Y \) by FD1 and FD3 (the proof of this property, called decomposition, is given later in the lecture).

\(\Sigma \models X \rightarrow X^* \)

• By induction, we show that at every step \(i \) in construction of \(X^* \), \(\Sigma \models X \rightarrow \text{closure}_i \), where \(\text{closure}_i \) is the set of attributes in the closure at step \(i \).
• Basis of induction: at step 0, \(\text{closure}_0 = \{X\} \), and \(\Sigma \models X \rightarrow X \) by FD1.
• Inductive step: suppose \(\Sigma \models X \rightarrow \text{closure}_i \), prove \(\Sigma \models X \rightarrow \text{closure}_{i+1} \).

Derivable rules

• Some other rules are also sound, but we do not need them for completeness because they follow from FD1-FD3.
• For example, Decomposition: if \(X \rightarrow YZ \), then \(X \rightarrow Y \).
• From \(Y \subseteq YZ \) we get \(Y \rightarrow Y \) by FD1.
• From \(X \rightarrow YZ \) and \(YZ \rightarrow Y \) we get \(X \rightarrow Y \) by FD3.
Derivable rules

Union: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- From $X \rightarrow Y$ we get $XX \rightarrow XY$ by FD2, and since $XX = X$ we get $X \rightarrow XY$.
- From $X \rightarrow Z$ we get $XY \rightarrow YZ$ by FD2.
- From $X \rightarrow XY$ and $XY \rightarrow YZ$ we get $X \rightarrow YZ$ by FD3.

Reading

- Ullman, Widom, chapter 3.5
- Stanczyk et al, Chapter 7.3 (Armstrong axiomatization of functional dependencies, 3NF).

Informal coursework

- Show that FD1 - FD3 imply

Pseudo-transitivity: if $X \rightarrow Y$ and $TY \rightarrow Z$, then $TX \rightarrow Z$.