DFS, BFS, cycle detection

- Previous lecture
- What is a graph
- What are they used for
- Terminology
- Implementing graphs

Today and tomorrow:

- Depth-first and breadth-first search
- Using DFS to detect cycles in directed graphs
- Complexity of breadth-first search
- Complexity of depth-first search

Breadth first search

BFS starting from vertex v:

create a queue Q
mark v as visited and put v into Q
while Q is non-empty
  remove the head u of Q
  mark and enqueue all (unvisited) neighbours of u

BFS starting from A:

Q={A}
Q={B,G}
Q={G,C,F}

BFS starting from A:

Q={A}
Q={B,G}
Q={G,C,F}
BFS starting from A:

Q={A}
Q={B,G}
Q={G,C,F}
Q={C,F}

BFS starting from A:

Q={A}
Q={B,G}
Q={G,C,F}
Q={C,F}
Q={F,D,E}
Q={D,E}
Q={E}
Q={}

Simple DFS

DFS starting from vertex v:

create a stack S
mark v as visited and push v onto S
while S is non-empty
    peek at the top u of S
    if u has an (unvisited) neighbour w,
    mark w and push it onto S
    else pop S
DFS starting from A:

S={A}

DFS starting from A:
DFS starting from A:

S={A}
S={A,B}
S={A,B,C}
S={A,B,C,D}
S={A,B,C,E}
S={A,B,C,E,F}
S={A,B,C,E,F,G}

DFS starting from A:

S={A}
S={A,B}
S={A,B,C}
S={A,B,C,D}
S={A,B,C,E}
S={A,B,C,E,F}
S={A,B,C,E,F,G}

DFS starting from A:

S={A,B,C,E,F}

DFS starting from A:

S={A,B,C,E,F}
S={A,B,C,E}

DFS starting from A:

S={A,B,C,E,F}
S={A,B,C,E}
S={A,B,C}
S={A,B}
Modification of depth first search

- How to get DFS to detect cycles in a directed graph:
  
  **idea:** if we encounter a vertex which is already on the stack,
  we found a loop (stack contains vertices on a path, and if
  we see the same vertex again, the path must contain a
  cycle).

- Instead of visited and unvisited, use three colours:
  - white = unvisited
  - gray = on the stack
  - black = finished (we backtracked from it, seen everywhere we can
    reach from it)

Modification of depth first search

Modified DFS starting from v:

1. all vertices coloured white
2. create a stack S
3. colour v gray and push v onto S
4. while S is non-empty
   1. peek at the top u of S
   2. if u has a gray neighbour, there is a
      cycle
   3. else if u has a white neighbour w,
      colour w gray and push it onto S
   4. else colour u black and pop S

Tracing modified DFS from A

S = {}

S = {}
Tracing modified DFS from A

S = {}

S = A

S = A

S = B

S = A

S = C

S = B

S = A

E has a gray neighbour: B!

Found a loop!
Pseudocode for BFS and DFS

• To compute complexity, I will be referring to an adjacency list implementation.
• Assume that we have a method which returns the first unmarked vertex adjacent to a given one:

```
GraphNode firstUnmarkedAdj(GraphNode v)
```

Implementation of `firstUnmarkedAdj()`

• We keep a pointer into the adjacency list of each vertex so that we do not start to traverse the list of adjacent vertices from the beginning each time.

```
v  → u1(marked) → u2(unmarked) → u3(unmarked)
```

Pseudocode for breadth-first search starting from vertex s

```
s.marked = true; // marked is a field in GraphNode
Queue Q = new Queue();
Q.enqueue(s);
while(!Q.isempty()){
    v = Q.dequeue();
    u = firstUnmarkedAdj(v);
    while(u != null){
        u.marked = true;
        Q.enqueue(u);
        u = firstUnmarkedAdj(v);
    }
}
```

Pseudocode for DFS

```
s.marked = true;
Stack S = new Stack();
S.push(s);
while(!S.isempty()){
    v = S.peek();
    u = firstUnmarkedAdj(v);
    if (u == null) S.pop();
    else {
        u.marked = true;
        S.push(u);
    }
}
```

Space Complexity of BFS and DFS

• Need a queue/stack of size |V| (the number of vertices).
Space complexity O(V).

Time Complexity of BFS and DFS

• In terms of the number of vertices V: two nested loops over V, hence O(V^2).
• More useful complexity estimate is in terms of the number of edges. Usually, the number of edges is less than V^2.
Time complexity of BFS

Adjacency lists:

<table>
<thead>
<tr>
<th>V</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0: {v1, v2}</td>
<td>mark, enqueue</td>
</tr>
<tr>
<td>v1: {v3}</td>
<td>v0</td>
</tr>
<tr>
<td>v2: {v3}</td>
<td>v1: {v3}</td>
</tr>
<tr>
<td>v3: {}</td>
<td>v2: {v3}</td>
</tr>
</tbody>
</table>

v0

v1

v2

v3
Complexity of breadth-first search

- Assume an adjacency list representation, $V$ is the number of vertices, $E$ the number of edges.
- Each vertex is enqueued and dequeued at most once.
- Scanning for all adjacent vertices takes $O(|E|)$ time, since sum of lengths of adjacency lists is $|E|$.
- Gives a $O(|V|+|E|)$ time complexity.

Complexity of depth-first search

- Each vertex is pushed on the stack and popped at most once.
- For every vertex we check what the next unvisited neighbour is.
- In our implementation, we traverse the adjacency list only once. This gives $O(|V|+|E|)$ again.