Simple sorting algorithms and their complexity

- Bubble sort
- Selection sort
- Insertion sort

```java
void bubbleSort(int arr[]){
    int i;
    int j;
    int temp;
    for(i = arr.length-1; i > 0; i--){
        for(j = 0; j < i; j++){
            if(arr[j] > arr[j+1]){
                temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        }
    }
}
```

Trace of bubble sort

`i = 5, first iteration of the outer loop`

```
array index

0 1 2 3 4 5

23 10 12 5 14 15
```

`j = 0, comparing arr[0] and arr[1]`

```
SWAP!
```

`i = 5, first iteration of the outer loop`

```
array index

0 1 2 3 4 5

23 10 12 5 14 15
```

Trace of bubble sort

```
SWAP!
```

`i = 5, first iteration of the outer loop`

```
array index

0 1 2 3 4 5

10 23 12 5 14 15
```
Trace of bubble sort

i = 5, first iteration of the outer loop
j = 1, comparing arr[1] and arr[2]

Trace of bubble sort

i = 5, first iteration of the outer loop
j = 2, comparing arr[2] and arr[3]

Trace of bubble sort

i = 5, first iteration of the outer loop
j = 1, comparing arr[1] and arr[2]

Trace of bubble sort

i = 5, first iteration of the outer loop
j = 2, comparing arr[2] and arr[3]
Trace of bubble sort

array index

0 1 2 3 4 5

10 12 5 23 14 15

i = 5, first iteration of the outer loop

SWAP!

array index

0 1 2 3 4 5

10 12 5 23 14 15

i = 5, first iteration of the outer loop

i = 5, first iteration of the outer loop

SWAP!

array index

0 1 2 3 4 5

10 12 5 23 14 15

i = 5, first iteration of the outer loop

SWAP!

array index

0 1 2 3 4 5

10 12 5 23 14 15

i = 5, first iteration of the outer loop
Trace of bubble sort

i = 5, first iteration of the outer loop
inner loop finished; largest element
in position 5, positions 0-4 unsorted

Trace of bubble sort

i = 4, second iteration of the outer loop
j = 0, comparing arr[0] with arr[1]

Trace of bubble sort

i = 4, second iteration of the outer loop
j = 1, comparing arr[1] with arr[2]

Trace of bubble sort

SWAP!

i = 4, second iteration of the outer loop
j = 1, comparing arr[1] with arr[2]

Trace of bubble sort

i = 4, second iteration of the outer loop

Trace of bubble sort

i = 4, second iteration of the outer loop
Complexity of bubble sort

- For an array of size n, in the worst case:
 1st passage through the inner loop: $n-1$ comparisons and $n-1$ swaps
 ...
 $(n-1)$st passage through the inner loop: one comparison and one swap.
- All together: $c ((n-1) + (n-2) + ... + 1)$, where c is the time required to do one comparison, one swap, check the inner loop condition and increment j.
- We also spend constant time k declaring i, j, temp and initialising i. Outer loop is executed $n-1$ times, suppose the cost of checking the loop condition and decrementing i is c_i.

\[
\begin{align*}
\text{Complexity of bubble sort} &= c ((n-1) + (n-2) + ... + 1) + k + c_i(n-1) \\
&= (n-1) + (n-2) + ... + 1 = n(n-1)/2 \\
\text{so our function equals} &= c \cdot n(n-1)/2 + k + c_i(n-1) = 1/2c \cdot (n^2-n) + c(n-1) + k \\
\text{complexity O(n^2).}
\end{align*}
\]
Complexity of bubble sort

Need to find n_0 and K, such that for all $n \geq n_0$,
1/2$c (n^2-2) + c_{1}(n-1) + k \leq K n^2$

1/2$c n^2 - 1/2c n + c_{1}n - c_{1} + k \leq$
1/2$c n^2 + c_{1}n + k \leq$
c $n^2 + c_{1}n^2 + k n^2$
Take $K = c + c_{1} + k$ and $n_0 = 1$.

Selection sort

```java
void selectionSort(int arr[]){
    int i, j, temp, pos_greatest;
    for( i = arr.length-1; i > 0; i--){
        pos_greatest = 0;
        for(j = 0; j <= i; j++){
            if( arr[j] > arr[pos_greatest])
                pos_greatest = j;
        }
        temp = arr[i];
        arr[i] = arr[pos_greatest];
        arr[pos_greatest] = temp;
    }
}
```

Trace of selection sort

<table>
<thead>
<tr>
<th>i = 5, first iteration of the outer loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i = 5, first iteration of the outer loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j = 0, pos_greatest = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j = 1, pos_greatest = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j = 2, pos_greatest = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>
i = 5, first iteration of the outer loop
j = 3, pos_greatest = 0

i = 5, first iteration of the outer loop
j = 4, pos_greatest = 0

i = 5, first iteration of the outer loop
j = 5, pos_greatest = 0

swap element at pos_greatest to 5

i = 4, second iteration of the outer loop
j = 0, pos_greatest = 0
i = 4, second iteration of the outer loop
j = 1, pos_greatest = 0

j = 2, pos_greatest = 0

j = 3, pos_greatest = 0

Swap element at pos_greatest and 4

i = 3, third iteration of the outer loop
j = 0, pos_greatest = 0
Trace of selection sort

0 1 2 3 4 5
14 10 12 5 15 23

i = 3, third iteration of the outer loop
j = 1, pos_greatest = 0

Trace of selection sort

0 1 2 3 4 5
14 10 12 5 15 23

i = 3, third iteration of the outer loop
j = 2, pos_greatest = 0

Trace of selection sort

0 1 2 3 4 5
14 10 12 5 15 23

i = 3, third iteration of the outer loop
j = 3, pos_greatest = 0

Trace of selection sort

0 1 2 3 4 5
5 10 12 14 15 23

i = 3, third iteration of the outer loop
swap elements at pos_greatest and 3

Trace of selection sort

0 1 2 3 4 5
5 10 12 14 15 23

i = 3, third iteration of the outer loop
j = 0, pos_greatest = 1 (changed!)

Trace of selection sort

0 1 2 3 4 5
5 10 12 14 15 23

i = 2, fourth iteration of the outer loop
j = 0, pos_greatest = 0
Trace of selection sort

i = 2, fourth iteration of the outer loop
j = 2, pos_greatest = 2 (changed again!)

Trace of selection sort

i = 1, fifth iteration of the outer loop
j = 0, pos_greatest = 0

Trace of selection sort

i = 1, fifth iteration of the outer loop
j = 1, pos_greatest = 1 (changed)

Trace of selection sort

i = 1, fifth iteration of the outer loop
swap element at pos_greatest with element at position 1 (10 with itself)

Trace of selection sort

i = 1, fifth iteration of the outer loop
done
Complexity of selection sort
- Same number of iterations
- Same number of comparisons in the worst case
- Fewer swaps (one for each outer loop = n-1)
- Also O(n^2)

Insertion sort

```java
void insertionSort(int arr[]) {
    int i, j, temp;
    for (j = 1; j < arr.length - 1; j++) {
        temp = arr[j];
        i = j; // range 0 to j-1 is sorted
        while (i > 0 && arr[i - 1] >= temp) {
            arr[i] = arr[i - 1];
            i--;
        }
        arr[i] = temp;
    } // end outer for loop
} // end insertion sort
```

Trace of insertion sort

- j = 1, first iteration of the outer loop
- temp = 10; i = 1; arr[i-1] >= 10

- Find a place to insert temp in the sorted range; as you are looking, shift elements in the sorted range to the right

- j = 1, first iteration of the outer loop
- temp = 10; i = 1; arr[i-1] >= 10

- j = 1, first iteration of the outer loop
- arr[i] = arr[i-1]
Trace of insertion sort

j = 2, second iteration of the outer loop
temp = 12; arr[i-1] >= temp

j = 2, second iteration of the outer loop
arr[i-1] = arr[i]

j = 2, second iteration of the outer loop
arr[i-1] < temp

j = 3, third iteration of the outer loop
temp = 5
Trace of insertion sort

j = 3, third iteration of the outer loop
arr[i-1] >= temp

j = 4, fourth iteration of the outer loop
arr[i-1] = temp

temp = 14
j = 4, fourth iteration of the outer loop
arr[i-1] >= temp

j = 5, fifth iteration of the outer loop
temp = 15

j = 5, fifth iteration of the outer loop
arr[i-1] >= temp

j = 5, fifth iteration of the outer loop
arr[i-1] = temp
Trace of insertion sort

- j = 5, fifth iteration of the outer loop
- arr[i-1] = temp

Complexity of insertion sort

- In the worst case, has to make n(n-1)/2 comparisons and shifts to the right
- also $O(n^2)$ worst case complexity
- best case: array already sorted, no shifts.

Reading and informal coursework

- Shaffer, Chapter 8.1, 8.2
- Informal coursework: prove that the simple sorting algorithms above are not in $O(N)$.