
Model-checking space and time requirements for
resource-bounded agents

Natasha Alechina1, Piergiorgio Bertoli2, Chiara Ghidini2, Mark Jago1, Brian Logan1,
and Luciano Serafini2

1 School of Computer Science
University of Nottingham

Nottingham, UK
{nza,mtw,bsl}@cs.nott.ac.uk

2 ITC-IRST, Trento, Italy
{bertoli,ghidini,luciano.serafini}@itc.it

Abstract. The effective reasoningcapability of an agent can be defined as its
capability to infer, within a given space and time bound, facts that are logical
consequences of its knowledge base. In this paper we show how to determine the
effective reasoning capability of an agent with limited memory by encoding the
agent as a transition system and automatically verifying whether a state where the
agent believes a certain conclusion is reachable from the start state. We present
experimental results using the Model Based Planner (MBP) which illustrates how
the length of the deduction varies for different memory sizes.

1 Introduction

Consider an agent that has a finite knowledge base and some rules of inference which
allow it to derive new information from its knowledge base. It is intuitively clear that
some derivations require more memory than others (e.g., to store intermediate results),
and that two agents with the same knowledge base and the same set of inference rules,
but with different amounts of memory, may not be able to derive the same formulas.

The question of how much memory a reasoning agent needs to derive a formula is
of considerable theoretical and practical interest. From a theoretical point of view, it is
interesting to investigate how the deductive strength of a particular logic changes when
only a fixed number of formulas are allowed to be ‘active’ in a derivation. From a practi-
cal point of view, the question of whether an agent will run out of memory or time before
achieving its goal(s) is clearly a major concern for the agent developer. As agent tasks
become more open ended, the amount of memory required to achieve them becomes
harder to predict a priori. For example, the reasoning capabilities of agents assumed by
many web service applications is non trivial (e.g., reasoning over complex ontologies or
about business processes described by a set of business rules) and the memory require-
ments correspondingly difficult for the agent developer to determine a priori. At the
same time trends towards mobile agents and agents which run on mobile devices such
as PDAs and smart phones imply more processor and memory efficient agent designs
(e.g., the Micro-FIPA-OS [19] and JADE-LEAP [5] platforms). Such devices typically
have a relatively small amount of physical memory (and no virtual memory), which

must be shared between the OS, the agent platform and other applications running on
the device. While increased bandwidth and more powerful handheld devices will un-
doubtedly become available, the rapid growth in, e.g., the number and complexity of
ontologies, seems likely to outstrip any increases in hardware capabilities, at least for
the foreseeable future.

In this paper, we present a novel procedure for automatically verifying the space
and time requirements for resource-bounded reasoning agents. Specifically, we address
the question: given an agent and a formula φ, does the agent have sufficient memory to
derive φ, and, if it does, what is the length of the shortest derivation within the specified
memory bound? In outline, our approach is as follows. We represent a reasoning agent
as a finite state machine in which the states correspond the formulas currently held in
the reasoner’s memory and the transitions between states correspond to applying the
reasoning rules. Our approach is general enough to admit verification of reasoners with
any set of inference rules, provided that those rules can be encoded as transitions be-
tween FSM states. To illustrate the generality of our approach, we show how to encode
two example reasoners: a classical propositional reasoner which can derive all classical
consequences of its knowledge base given unlimited memory, and a forward-chaining
rule-based agent of the kind found in many applications employing ontological reason-
ing and business rules. To check whether a reasoner has enough memory to derive a
formula φ, we specify the FSM as input to the model-based planner MBP [7], and check
whether the reasoner has a plan (a choice of memory allocations and inference rule ap-
plications), all executions of which lead to states containing φ. Using a simple business
rules example, we show how MBP can be used to automatically verify the existence
of a derivation, and present experimental results which illustrate how the length of the
deduction varies for different memory sizes.

The remainder of the paper is organised as follows. In section 2 we introduce our
model of the agent’s memory and give some examples of the kinds of properties we wish
to verify. In section 3, we present our formal model of a resource bounded agent and
show how to model two example agents, a simple agent that reasons using rules, and a
classical reasoner capable of deriving any classical consequence of its knowledge base.
In section 4 we briefly introduce the MBP model-based planner and explain how it is
used to verify the memory requirements of a resource-bounded reasoner. In section 5 we
present a simple example to illustrate the effects of memory limitations on a rule-based
reasoning agent and give results from MBP illustrating how the length of deduction
varies for different memory sizes. In section 6 we briefly describe related work before
concluding in section 7.

2 Memory bounds

Consider an agent running on a small device like a mobile phone, a simple PDA, or even
a smaller device like a node of a sensor network. The agent has a pool of potentially
available information stored in a Knowledge Base (K)3 and a fixed set of reasoning

3 The information could be stored in a remote database or in a persistent memory like a flash
card or obtained in input from a user. In this paper we abstract from these aspects and say only
that information is potentially available in a knowledge base K.

rules. Using information from the knowledge base and the inference rules, the agent
can infer new formulas. We assume that the knowledge base is too large to fit into the
agent’s memory, and the agent can store at most n formulas from K in memory at
any given time. Loading new information from the KB when the agent’s memory is full
overwrites some of the information currently in memory. For example, a location-aware
device which advises a traveller about local amenities and tourist attractions cannot load
an entire database of attractions and ontological definitions in memory when computing
a recommendation, and will have to manage the subset of formulas from K which
are in memory and available for inference. Given this resource bound, which we call,
‘memory of size n’, the properties we are interested in verifying are of the form: can
a formula φ be derived with a memory of size n?; what is the minimum amount of
memory required to derive φ?; is there a relation between memory size and the number
of steps required to derive φ? what is the minimum amount of memory required to
derive φ with the shortest derivation?

To illustrate the impact of memory bounds in the reasoning process, consider an
agent with a knowledge base K composed of the following formulas:

A,A→ B,B → C,C → D. (1)

If the only inference rule the agent uses is modus ponens, it will require a memory of at
least size 2 to derive D:

1. read A (memory contains {A})
2. read A→ B (memory contains {A, A→ B})
3. apply modus ponens and store B, overwriteA (memory contains {A→ B, B})
4. read B → C, overwriteA→ B (memory contains {B, B → C})
... . . .
n. until we apply all the rules and conclude D.

The deduction above requires only two formulas in memory at any given time as we can
overwrite the antecedent of an implication with the result of applying modus ponens,
load the next implication, apply modus ponens, and store the new result. Notice that
after adding new implications, say E → F , F → G, we still need only two formulas
in memory to derive G. Thus memory requirements do not necessarily depend upon
the number of formulas used in the derivation. However, if K contains the following
formulas

A,A→ B,A ∧B → C,B ∧C → D (2)

and the agent reasons using the inference rules modus ponens (MP) and conjunction
introduction (∧I), then the derivation requires storing at least 3 formulas in memory at
any given time. Notice that the two knowledge bases (1) and (2) are logically equivalent.
Thus memory requirements can change for logically equivalent knowledge bases. Also,
it can be shown that adding conjunction elimination to the set of rules allows the agent
to derive D with only 2 formulas in memory. Thus, memory requirements also depend
upon the inference rules available to the agent.

In summary, there is a trade-off between space and time requirements, and the mem-
ory required for a derivation will depend on both K and the agent’s inference rules.

Given a procedure for determining how much memory a given derivation requires (and
how much time it takes) for particular inference rules and K , an agent developer can
ensure that an agent has sufficient memory for a particular task, or, conversely engineer
a K which will allow an agent with particular inference capabilities and memory size
to derive a given formula.

3 Formal model

We model resource-bounded agents as finite state machines (FSM) or transition sys-
tems. Let the internal language of the agent be some language L (e.g. propositional
language). The definition of a transition system is given relative to the following com-
ponents:

1. the bound n on the agent’s memory size
2. the agent’s reasoning rules
3. the agent’s knowledge base K ⊆ L
4. the agent’s goal formula AG ∈ L

The set of all subformulas of K and AG will be denoted by Ω. We abstract away from
the size of the formulas. However, givenK , the maximal size of any formula which the
agent’s state has information about, will be fixed.

In the remainder of this section, we first define the language and transition systems
for ‘definite reasoning’ agents, which never do reasoning by cases or assumption-based
reasoning, and give an example of such an agent (rule-based agent). We then introduce
a more complex logic for agents that need to maintain a set of epistemic alternatives,
and give an example of such an agent (classical reasoner).

3.1 Definite reasoners

The language of the logic BMLd (for bounded memory logic, definite case) is defined
relative to the agent’s internal language L. Well formed formulas (w.f.f.) are defined as
follows:

– If A is a formula of L, then BA (the agent believes A) is a w.f.f.
– If φ is a w.f.f., then ¬φ, EXφ (‘in one of the successor states, φ’) and EFφ (‘in

some future state, φ’) are w.f.f.
– If φ1 and φ2 are w.f.f., then φ1 ∧ φ2 is a w.f.f.

Other boolean connectives are defined in the usual way. We also define AXφ as ¬EX¬φ
and AGφ as ¬EF¬φ.

A transition system M = (S,R, V) consists of a set of states S, a serial binary
relation R on S (transitions between states) and an assignment V : S −→ P(Ω)
(assigning to the state the set of formulas the agent believes in that state). Notice that
V (s) is not a classical truth assignment, as it might contain complex formulas, e.g.,
A∧B, as well as contradictory formulas, e.g.,A∧B,¬B ∈ V (s). To reflect the fact that
the agents have bounded memory, we postulate that V can assign at most n formulas

to any given state. The transitions which the agent can make depend on the agent’s
inference rules. In our model, we assume that one of the agent’s possible transitions
is ‘reading’ a K formula into its memory or ‘active state’. Reading a formula may
correspond to reading from flash memory, asking for user input, or reading data from a
server over the network.

The definition of a formula being satisfied in M, s ∈ S is as follows:

M, s |= BA iff A ∈ V (s)
M, s |= ¬φ iff M, s �|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= EXφ iff there exists a state t such that R(s, t) and M, t |= φ.
M, s |= EFφ iff there exists a sequence of states t1, . . . , tk such that for all i ∈

{1, . . . , k − 1}, R(ti, ti+1), t1 = s and M, tk |= φ

Let M be a class of models (for example, all models with the same knowledge base and
the same transition rules). A formula is M-satisfiable if it is true in some state in some
model in M. A formula is M-valid if it is true in every state in every model in M. The
definition of logical consequence is standard.

The bound n on the size of the agent’s memory is expressed by the following axiom
schema:

B(n) BA1 ∧ . . . ∧ BAn → ¬BAn+1 where Ai �= Aj if i �= j.

We can express that the agent can derive its goal AG from its knowledge base K as
EF BAG (there is some future state where the agent believes AG). The fact that a
formula is derivable in k steps can be expressed as EX kBAG (where EX k denotes k
applications of the operator EX). Similarly, the fact that an agent needs at least k + 1
steps to derive a formulaAG can be expressed as AX k¬BAG.

3.2 Rule-based reasoners

In this section we present a simple example of an agent which reasons using rules, e.g.,
ontology rules, or business rules. We assume that agent’s knowledge base consists of
ground atomic formulas and rules of the formA1∧. . .∧An → B, whereA1, . . . , An, B
are atomic formulas (see, for example, [14]). An example of such rule would be

Parent(x, y) ∧Brother(y, z) → Uncle(x, z)

Essentially, such agents can only reason by a single inference rule:

A1(ā), . . . , An(ā) ∀x̄(A1(x̄) ∧ . . . ∧An(x̄) → B(x̄))
B(ā)

By generating all possible substitutions of constants occurring in the knowledge
base into the rule, we can reduce the knowledge base to a purely propositional set of
formulas, consisting of propositional variables and implications of the form p1 ∧ . . . ∧

pn → q. Then the only rules the agent needs to derive all ‘rule-based’ consequences are
conjunction introduction ∧I and modus ponensMP :

A1, A2

A1 ∧A2
∧I

A1, A1 → A2

A2
MP

We show how to represent this reasoner as an FSM. Let V ′(s) be any subset of V (s)
which differs from V (s) in at most one formula and has cardinality at most n− 1. The
rule-based reasoner has the following transitions:

Read R(s, t) if V (t) = V (s)′ ∪ {A} for some A ∈ K
AND R(s, t) if A1, A2 ∈ V (s) and V (t) = V (s)′ ∪ {A1 ∧A2}.
MP R(s, t) if A1 ∈ V (s), A1 → A2 ∈ V (s), and V (t) = V (s)′ ∪ {A2}.
Reflexivity R(s, s)

For technical convenience (we will discuss a class of models without this assumption
later in this section), we also allow (but not require) ‘forgetting’ transitions of the form
R(s, t), where V (t) = V ′(s).

Notice that the definition of V ′(s) guarantees that after each transition R(s, t), the
memory bound is satisfied by V (t), i.e., |V (t)| ≤ n.

A formula AG is derivable from K using only modus ponens and conjunction in-
troduction with memory of size n if, and only if, MK,AG, start |= EF BAG, where
MK,AG is a rule-based transition model where states are assigned only formulas which
are subformulas ofK andAG, V (s) for any s contains at most n formulas, and V (start)
= ∅. Indeed, a derivation ofAG fromK using only the allowed rules and at most n for-
mulas in memory corresponds to a branch in a state transition system described above
from an empty state to a state containing AG; and conversely, such a branch can be
converted into a derivation ofAG fromK . Similarly,AG is derivable fromK in k steps
iff MK,AG , start |= EX kBAG.

The logical axioms corresponding to the rule-based reasoner’s transition rules are
as follows (we assume n ≥ 1 for A1):

A1 EXBA for A ∈ K
A2 BA1 ∧ BA2 → EXB (A1 ∧A2)
A3 BA1 ∧ B (A1 → A2) → EXBA2

Finally, we need to express that only transitions which are made according to the rules
are possible, and that in each transition at most one new formula is added and at most
one formula is overwritten.

A4 EX(BA1 ∧ BA2) → BA1 ∨ BA2

A5 EX(¬BA1 ∧ ¬BA2) → ¬BA1 ∨ ¬BA2

A6 EXB (A1 ∧A2) → B (A1 ∧A2) ∨ (BA1 ∧ BA2)
A7 EXBA2 → BA2 ∨ ∨

A1→A2∈K(B (A1 → A2) ∧ BA1) for A2 �∈ K and A2 �=
B ∧ C

Note that the only axiom schema which depends on K is A7. Let ML(K,n,EX) be
the logic defined by the set of axiom schemata A1 - A7, B(n), together with the classical
and modal axioms for EX :

Cl tautologies of classical logic
K AX (φ→ ψ) → (AXφ→ AXψ)
T φ→ EXφ
MP � φ, � φ→ ψ ⇒� ψ
N � φ⇒� AXφ

Let M(K,n) stand for the class of models where the knowledge base isK , the memory
size is n, and the only possible transitions are defined by the transition rules above. We
then have the following completeness result.

Theorem 1. ML(K,n,EX) is sound and strongly complete with respect toM(K,n).

We omit the proof due to the lack of space; it can be found in [2].

3.3 More general reasoners

In this section, we model reasoners which can reason by cases, or in general consider
hypothetical states; this means that their transitions do not necessarily follow the logical
consequence relation. We also extend the language to express disbelief as well as belief.

Consider a reasoner who believes:

A ∨B, A→ C, B → C.

To derive C, it has to reason by cases: assume A; derive C. Then, assume B; derive
C. Hence, it is safe to believe C. However, if the process of assuming A corresponds
to a transition to a state where A is believed, the modelling is not ‘safe’ — the agent’s
beliefs are not justified by valid inference steps. In the state where it assumes A, the
agent should remember that this is just one of the epistemic alternatives, and that in
others A is false and B is true.

To deal with such reasoners, we add an extra set of ‘epistemic alternatives’ or pos-
sible worlds to each state. Intuitively, a formula is now believed in a state if it is true in
all of the epistemic alternatives associated with this state. We express this as �BA.

The language of the logic BML (for bounded memory logic) extends the language
of BMLd by adding extra clauses:

– If A is a formula of L, then B̄A (the agent disbelieves A) is a w.f.f.
– If φ is a w.f.f., then ♦φ is a w.f.f.

We also define �φ as ¬♦¬φ.
For such general reasoners, we can express that the agent can derive AG from its

knowledge base K as EF�BAG (there is some future state where in all epistemic
alternatives the agent believes AG).

A BML transition system M = (S,W,R, Y, T, F) consists of a set of states S, a
set of possible worlds or epistemic alternativesW , a binary relation R on S, a function
assigning to each state a set of epistemic alternatives Y : S −→ P(W), and two
assignments T : W −→ P(Ω) and F : W −→ P(Ω) which say whether the value of
an (internal language) formula in a world is true or false (where, as beforeΩ is the set of
subformulas of K and AG). As before, to reflect the bound on the agent’s memory, we

require |T (w)| + |F (w)| ≤ n, for any given state w. Moreover, the truth assignments
should be consistent, i.e., T (w) ∩F (w) = ∅. The following truth definitions have been
added or modified compared to BMLd. Note that we talk about truth in a world and
truth in a state:

M,w |= BA iff A ∈ T (w)
M,w |= B̄A iff A ∈ F (w)
M, s |= ♦φ iff there exists w in Y (s), such that M,w |= φ.

The bound n on the size of the agent’s memory is expressed by the following axiom
(which replaces B(n) defined for BMLd):

B(n)′ �(
∼
B A1 ∧ . . .∧

∼
B An → ¬

∼
B An+1), where

∼
B Ai stands for either BAi or

B̄Ai and Ai �= Aj for all i, j ∈ {1, . . . , n+ 1} such that i �= j.

3.4 Classical reasoners

In this section we present a simple example of a classical reasoner, which, given unlim-
ited memory, is capable of deriving any classical consequence of its knowledge base.

Epistemic alternatives are introduced when the classical reasoner applies non-deterministic
rules, such as disjunction elimination. Suppose, for example, that the agent has A ∨ B
in its knowledge base and starts in a state s0, which has a single epistemic alternative
w0 with T (w0) = F (w0) = ∅. The agent can read A ∨ B and transit to a state s1 with
a single epistemic alternative w1, such that A ∨ B ∈ T (w1). Now the agent applies a
non-deterministic rule for disjunction; it may assume that both disjuncts are true, or A
is true andB is false, or vice versa. Formally, this means that the agent transits to a state
s2 where the epistemic alternatives are:

1. w11 with A,B ∈ T (w11),
2. w12 with A ∈ T (w12) and B ∈ F (w12),
3. w13 with B ∈ T (w12) and A ∈ F (w12).

Note that the classical reasoner cannot deriveA fromA∨B in the sense of our criterion
of EF�BA being true:A is true inw11 andw12, but false in w13, so s2 does not satisfy
�BA.

The transition relation R between states is defined in terms of expansion relation
between epistemic alternatives �. Expansion corresponds to applying an inference rule
to formulas in the epistemic alternative; in the example above, w1 is expanded (by
applying the rule of disjunction elimination) tow11, w12, w13. Formally,R(s, t) holds if
Y (s) = {w1, . . . , wm}, and for somewi ∈ Y (s), Y (t) = (Y (s)\{wi})∪{v : wi � v}.

Before we define the expansion relation, we need a few preliminary definitions and
comments. Note that the classical reasoner agent can construct new formulas in addition
to decomposing formulas. We only allow the construction of formulas which are in Ω
(the set of subformulas of K and AG). This does not affect the completeness of agent’s
rules (since these are the only formulas it may possibly need in the derivation of AG

from K), but allows us to represent it as a finite state machine.

Since the agent can both believe and disbelieve formulas (and its language contains
negation), an issue of inconsistent possible worlds arises. An agent cannot make a tran-
sition to a possible world where the same formula is assigned to true and false. All rules
therefore have to have a proviso that if w � v then it impossible, for any formula A, to
have A ∈ T (w) and A ∈ F (v) or vice versa:

Recall w � v and A ∈ T (v) ⇒ A �∈ F (w), and w � v and A ∈ F (v) ⇒ A �∈ T (w)

Here is a list of possible types of transitions:

Read w � v if for some formulaA ∈ K ,A ∈ T (v), and otherwise T (v), F (v) contain
the same formulas as T (w), F (w), apart from possibly omitting one (overwritten)
formula. Observe that w can be expanded by the Read transition in as many ways
as there are formulas in K , and choices for overwriting a formula in T (w) ∪ F (w)
(including a choice to overwrite nothing). In the modelling section, these two for-
mulas (a formula added and a formula overwritten) are made explicit parameters in
defining the transition.

Split w � v1 and w � v2 if for some formulaA ∈ Ω with A �∈ T (w) ∪ F (w),
A ∈ T (v1), A ∈ F (v2), and otherwise the truth assignment in v1, v2 is the same
as in w, with at most one formula in each world being overwritten, and Recall is
satisfied. This transition rule enables the agent to do reasoning by cases, and is
equivalent to having A ∨ ¬A as an axiom, for everyA ∈ Ω.

ExContradictio w � v if for some A, A ∈ T (w) and ¬A ∈ T (w), or A ∈ F (w) and
¬A ∈ F (w), and T (v) contains AG.

makeNot w � v if for some ¬A ∈ Ω, A ∈ T (w) ∪ F (w), and ¬A ∈ T (v) ∪ F (v)
with the opposite sign, otherwise the truth assignment in v is the same as in w (with
at most one formula possibly overwritten), and Recall is satisfied.

elimNot w � v if for some ¬A ∈ Ω, ¬A ∈ T (w)∪F (w), andA ∈ T (v)∪F (v) with
the opposite sign, otherwise the truth assignment in v is the same as in w (with at
most one formula possibly overwritten), and Recall is satisfied.

makeAnd w � v if for some A1 ∧ A2 ∈ Ω, A1, A2 ∈ T (w) ∪ F (w) and A1 ∧A2 ∈
T (v) ∪ F (v), so that the value of A1 ∧A2 in v is the logical ‘and’ of the values of
A1, A2 in w, otherwise the truth assignment in v is the same as in w (with at most
one formula possibly overwritten), and Recall is satisfied.

elimAnd w � v if A1 ∧ A2 ∈ T (w) ∪ F (w), A1, A2 ∈ T (v) ∪ F (v), so that the
logical ‘and’ of the truth value of A1 and A2 in v equals to the value of A1 ∧ A2

in w, otherwise the truth assignment in v is the same as in w (with at most two
formulas possibly overwritten), and Recall is satisfied. If the conjunction is true in
w, there is only one possible truth assignment to the conjuncts in v, but if it is false,
then w can be expanded by this rule to worlds where one of the conjuncts is true
and another one false, or both false.

Transition rules for other connectives are defined in similar fashion.

Theorem 2. A classical reasoner with unbounded memory can deriveAG from K
wheneverAG is a classical consequence ofK.

Proof. LetAG be a classical consequence ofK . IfK is inconsistent, we use ExContra-
dictio to derive AG. If K is consistent, the strategy for deriving AG is as follows. The
reasoner does not overwrite any formulas. It reads all formulas fromK and decomposes
them down to all possible assignments to propositional variables in K . If variables of
AG are a subset of the variables ofK , then each branch in the previous execution can be
continued with a successful composition of AG (since every assignment satisfying K
satisfies AG. Else let V ar(AG)\V ar(K) = {q1, . . . , qm}. Then, continue each branch
of the previous derivation with m splits on each of qi. This will generate all possible
assignments to V ar(K) ∪ {q1, . . . , qm} which make K true. By assumption, each of
them makes AG true, so again on each branch AG can be successfully assembled.

4 Verifying reasoning capabilities

The problem of identifying the existence (and the minimal length) of a deduction forAG

from a knowledge base K , for an agent with bounded memory modelled as a transition
system M can be recast as a planning problem: find a control strategy for M (a plan)
such that, starting from any state in K , it leads to some state in AG. The plan is the
proof of AG.

In general,M is a nondeterministictransition system, since applying a rule may lead
to several epistemic alternatives, as shown e.g. in Sec. 3.4 for the case of disjunction
elimination. Thus, we are interested in strongplans [7]: tree-structured plans such that
their execution leads to the goal, for everypossible outcome of the actions in the plan.

Among the few planners capable to deal with strong planning for nondeterministic
domains, we selected MBP, a system coupling effective algorithms with an input lan-
guage which allows a concise description of transition systems in logical terms. In this
section, we provide a high-level description of the way the proof existence problem is
recast as a planning domain in MBP. We take as reference the classical reasoner, leaving
the simpler case of rule-based reasoning to the reader. For reasons of space, we will
omit the encodings of the rules associated to disjunction and implication, which are
analogous to the one for conjunction.

In the following, we partition Ω into the subsets Ω0, Ω¬, Ω∨, Ω∧, Ω→ which con-
tain respectively atomic formulae, and formulae whose top-level connective is a nega-
tion, disjunction, conjunction or implication. Moreover we define the functions l(·) and
r(·) which return the left/right parts of non-atomic formulas. We omit their trivial defi-
nition, and we take the convention that l(¬φ) = φ.

The core of the encoding consists in representing the state transition system de-
scribed in Section 3 as a planning domain. Formally, a planning domain is a triple
(S,Act, R), where S are the states of the domain, Act is a set of actions, and R ⊆
S ×Act× S is the transition relation, describing the outcomes of the action execution;
an action is executable over a state s iff ∃(s, α, s′) ∈ R. Our mapping views actions
as deduction rules and domain states as epistemic states of the agent. In a planning do-
main, the state is represented by means of a set of state variables. In our case, the set
V will be composed of |Ω| three-valued state variables. We will denote with V (φ) the
value of the variable associated to φ. V (φ) corresponds to the believed value of φ (� or
⊥), or indicates that nothing is believed about it (U), representing the T , F assignments

of the transition system for BML. The memory bound condition is enforced by a con-
straint Ψ≤n on R, of the form |{A : V (A) �= U}| ≤ n, directly represented in MBP as
a TRANS Ψ≤n construct.

The actions of the domain represent every possible instance of the deduction rules
(Read, Split, etc.) over the formulas in Ω. Such instantiation must also explicitly con-
sider, for a given action, every possible choice of the formula(s) to be overwritten by
the newly produced formula(s). As such, actions feature one argument in Ω represent-
ing the formula to be read, split, or composed, and one or two additional arguments in
Ω′ = Ω ∪ {A0}, indicating the formula(s) to be overwritten, and the fictitious formula
A0 if no rewriting occurs. This defines the range of the action variable α in the planning
domain:

α ∈
⋃

A∈K
B∈Ω′

Read(A,B)∪
⋃

A∈Ω
B∈Ω′

Split(A,B)∪
⋃

A∈Ω
B∈Ω′

ExC(A,B)∪
⋃

A∈Ω¬
B∈Ω′

makeNot(A,B)∪

⋃

A∈Ω¬
B∈Ω′

elimNot(A,B) ∪
⋃

A∈Ω∧
B∈Ω′

makeAnd(A,B) ∪
⋃

A∈Ω∧
B1 �=B2

B1,B2∈Ω′

elimAnd(A,B1, B2)

The executability preconditions and the effects of the actions are encoded in MBP as
an implicitly conjoined set of constraints over the transition relation, again of the form
TRANS Ψ .

The executability preconditions correspond to the constraints on the current world
in the transition rules in Section 3:

α = Read(A,B) → A ∈ K

α = ExC(A,B) → U �= V (A) = V (l(A))
α = makeNot(A,B) → V (l(A)) �= U

α = elimNot(A,B) → V (A) �= U

α = makeAnd(A,B) → V (l(A)) �= U ∧ V (r(A)) �= U

α = elimAnd(A,B1, B2) → V (A) �= U

The (possibly nondeterministic) effects of an action are represented by partitioning the
effects over the formula(s) read or built by the rule, and those over the formula(s) that
are possibly overwritten by the result(s) of its application. The former are written in
terms of the values V must attain for the affected formula(s) after the action execution
(i.e. at the next step, denoted withX), constrained by the current values of V , according
to the definitions in Section 3.

α = Read(A,B) → X(V (A) = �)
α = Split(A,B) → X(V (A) ∈ {�,⊥})
α = ExC(A,B) → X(V (AG) = �)
α = makeNot(A,B) → X(V (A)) = ¬(V (l(A)))
α = elimNot(A,B) → X(V (l(A))) = ¬(V (A))
α = makeAnd(A,B) → X(V (A)) = V (l(A)) ∧ V (r(A))
α = elimAnd(A,B1, B2) → V (A) = X(V (l(A)) ∧ V (r(A)))

The following constraints ensure that overwritten formulas become undefined:

α = Read(A,B) ∧B �∈ {A0, A} → X(V (B) = U)
α = Split(A,B) ∧B �∈ {A0, A} → X(V (B) = U)
α = ExC(A,B) ∧B �∈ {A0, AG} → X(V (B) = U)
α = makeNot(A,B) ∧B �∈ {A0, A} → X(V (B) = U)
α = elimNot(A,B) ∧B �∈ {A0, l(A)} → X(V (B) = U)
α = makeAnd(A,B) ∧B �∈ {A0, A} → X(V (B) = U)
α = elimAnd(A,B1, B2) ∧B1, B2 �∈ {A0, l(A), r(A)} → X(V (B1) = V (B2) = U)

The constraints above must be conjoined with those representing the Recall proviso,
and the provisos on the inertiality of the values of non-affected formulas. Recall is
expressed by adding, for each A ∈ Ω, two constraints of the form V (A) = � →
X(V (A)) �= ⊥ and V (A) = ⊥ → X(V (A)) �= �. Inertiality is expressed by adding
constraints stating explicitly that unless a formula is overwritten or produced, it does
not change its value, e.g.:

α = makeAnd(A,B) ∧A′ �∈ {A,B} → X(V (A′)) = V (A′)

Given the encoding above, the planning problem is described by an initial state
where ∀A ∈ Ω : V (A) = U , and by a goal state V (AG) = �.

MBP implements many possible search styles. We chose breadth-first backward
search which guarantees that the shortest plan is selected. The computational burden
imposed by such a search style is effectively constrained by the use of symbolic repre-
sentation techniques that allow a very compact encoding, and an efficient handling of
extremely large state sets at once; details can be found in [7].

5 Experiments

We present a simple example to illustrate the effect of memory size on the minimum
length of a derivation. Consider the set of rules

A ∧B → H B ∧ I ∧ E → L F ∧G→M

A ∧B → C D ∧A ∧H → I I ∧ L ∧M → N

which may form part of a larger knowledge base. Suppose a designer of a system which
uses a knowledge base containing these rules wishes to verify, e.g., that from the fol-
lowing basic facts {B,D,E, F,G} an agent running on a PDA with a memory of size
n can inferN ∧C. In addition, the designer may be interested in how increases in mem-
ory size affect the number steps required for the derivation, e.g., if they wish to trade
memory for response time.

Figure 1 shows the length of the shortest deduction of the formula N ∧ C for dif-
ferent memory sizes as determined by the MBP planner. Deriving the target formula
requires a memory of at least size 3. For memory size of 1 and 2 the system quickly de-
termines that there are no possible derivations of the target formula. Let us focus on the

Fig. 1. Running the example

lower curve. With 3 memory cells the deduction requires 31 steps. With a memory of
size 4, the number of steps in the deduction drops to 27. This is because the fourth cell is
used to store an intermediate result which is used more than once in the derivation and
does not need to be recomputed, thus shortening the inference process. In this example
further increases in the amount of memory do not result in further reductions in the
length of derivation. These results do not consider explicitly the action of overwriting a
memory location, that is, steps in the derivation consist either of the application of an
inference rule or reading a formula from K . In computing the length of a deduction we
may also want to explicitly consider the action of over-writing a memory location (we
can think of this step as choosing which location in memory to over-write). The upper
curve in Figure 1 shows the length of the derivations including these extra steps. With a
memory of size 3, the number of steps in the derivation is 59 (31 steps + 28 over-write
operations). With a memory of size 4 this drops to 50 steps (27 steps + 23 over-write
operations). As can be seen, the number of times a cell in over-written continues to drop
with increasing memory size, until with a memory of size 27, when we can store all the
subformulas used in the derivation in memory, the length of the derivation is the same
as in the previous case.

6 Related work

Our work is related to other work on logics of knowledge and belief, for example [11].
Much of this work assumes that the agent’s knowledge is deductively closed, and there-
fore does not try to model the time and space restrictions on an agent’s ability to derive
the consequences of its beliefs. There is a growing body of work in which the agent’s
deduction steps are explicitly modelled in the logic, for example [10, 8, 3, 1]. These ap-
proaches make it possible to model the time it takes the agent to arrive at a certain
conclusion, but not the space required. A different kind of limitation on the depth of
belief reasoning allowed is studied in [13]. Limitations on memory are considered in
fewer approaches; for example, in work on the logic of games [20], where an agent with
limited memory can base its strategy only on a limited portion of the game’s history,
and in some of the work on step logic [9], which considers both the time and space

limitations on the agent’s knowledge. Step logic makes use of the notion of a stepin
reasoning. Given a set of formulas X and a set of inference rules I , an agent performs
a step of reasoning by adding the consequents of any applicable inference rule in I to
X . If a formula φ had been derived in this way at step t, it is said to be a t-theorem. [9]
address the issue of the increasing number of t-theorems at each step, which require a
larger and larger memory size. However, rather than attempting to verify the space re-
quired to solve a given problem, [9] are concerned with restricting the size of short term
memory to isolate any possible contradictions, thereby avoiding the problem of swamp-
ing: deriving all possible consequences from a contradiction. The emphasis on perfect
rationality in AI was challenged by Russell in [18] in favour of bounded optimality,
(optimality relative to the time and space bounds on the device the agent program is
running on).

The problem of formal verification of multi agent systems has lead to a growing
body of work, especially in the area of multi agent model checking [4, 16]. The existing
work, however, is mainly focused on logically omniscient agents, that is, agents who
instantaneously believe all the logical consequences of their basic beliefs, and no time
and space limitations are taken into account.

The connection between deduction and planning has long been established for a va-
riety of logics, e.g. temporal, linear and propositional logics, see [15, 6, 17, 12]. The ex-
isting work, however, focused on using effective theorem provers to build plans, rather
than exploiting a planner to build a deduction. To the best of our knowledge, ours is the
first experiment in this direction.

7 Conclusions and Future Work

In this paper, we have attempted to take seriously the idea that reasoning is a pro-
cess which requires memory, and developed a framework for representing and verifying
memory-bounded reasoners. While the temporal aspect of reasoning has been studied
before, we believe that our treatment of the memory aspect is novel. We have proposed
a new kind of epistemic logic where memory is explicitly modelled. The logic is inter-
preted on state transition systems, where the reasoner’s state can contain only a fixed
finite number of formulas (beliefs), and transitions correspond to application of infer-
ence rules by the agent. By specifying the state transition system as an input to the MBP

planner, we can automatically verify the lower bounds on memory required by the agent
to derive a certain formula.

In future work, we plan to remove some idealisations made in the present work,
such as constant size of formulas, and paying no penalty in terms of memory for back-
tracking.
Acknowledgements This work was supported by the Royal Society UK-Italy Joint
Project grant ‘Model-checking resource-bounded agents’.

References

1. T. Ågotnes and M. Walicki. Complete axiomatizations of finite syntactic epistemic states. In
Proceedings of the 3rd International Workshop on Declarative Agent Languages and Tech-
nologies (DALT 2005), July 2005.

2. N. Alechina, P. Bertoli, C. Ghidini, M. Jago, B. Logan, and L. Serafini. Verifying space
and time requirements for resource-bounded agents. Technical Report T05-10-03, ITC-irst,
Trento, Italy, 2005.

3. N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for resource-
bounded agents. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2004), pages 606–613, New York, July 2004.
ACM Press.

4. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent Systems. Jour-
nal of Logic and Computation, Special Issue on Computational & Logical Aspects of Multi-
Agent Systems, 8(3):401–423, 1998.

5. M. Berger, B. Bauer, and M. Watzke. A scalable agent infrastructure. In Proceedings of the
Second Workshop on Infrastructure for Agents, MAS and Scalable MAS (held in conjuction
with Autonomous Agents’01), Montreal, 2001.

6. W. Bibel. A deductive solution for plan generation. New Generation Computing, 4:115–132,
1986.

7. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Plan-
ning via Symbolic Model Checking. Artificial Intelligence Journal, 147(1,2):35–84, July
2003.

8. H. N. Duc. Reasoning about rational, but not logically omniscient, agents. Journal of Logic
and Computation, 7(5):633–648, 1997.

9. J. Elgot-Drapkin, M. Miller, and D. Perlis. Memory, reason and time: the Step-Logic ap-
proach. In Philosophy and AI: Essays at the Interface, pages 79–103. MIT Press, Cambridge,
Mass., 1991.

10. J. J. Elgot-Drapkin and D. Perlis. Reasoning situated in time I: Basic concepts. Journal of
Experimental and Theoretical Artificial Intelligence, 2:75–98, 1990.

11. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, Mass., 1995.

12. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:187–208, 1971.

13. M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 200–206. Morgan Kaufmann, 1999.

14. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In Proceedings
of the 13th international conference on World Wide Web, WWW 2004, pages 723–731. ACM,
2004.

15. E. Jacopin. Classical AI planning as theorem proving: The case of a fragment of linear logic.
In AAAI Fall Symposium on AutomatedDeduction in Nonstandard Logics, pages 62–66, Palo
Alto, California, 1993. AAAI Press.

16. M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems via un-
bounded model checking. In Proceedings of the Third International Joint on Autonomous
Agents and Multiagent systems. (AAMAS04), New York, August 2004.

17. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic
search. In Proceedings of the Thirteenth NationalConference on Artificial Intelligence,
pages 1194–1201. AAAI Press, 1996.

18. S. J. Russell. Rationality and intelligence. Artif. Intell., 94(1-2):57–77, 1997.
19. S. Tarkoma and M. Laukkanen. Supporting software agents on small devices. In Proceedings

of the First International Joint Conferenceon Autonomous Agents andMultiagent Systems
(AAMAS’02), pages 565–566, New York, NY, USA, 2002. ACM Press.

20. J. van Benthem and F. Liu. Diversity of agents in games. Philosophia Scientiae, 8(2), 2004.

