
Categorical and Kripke Semantics for Constructive S4
Modal Logic

Natasha Alechina1, Michael Mendler2, Valeria de Paiva3, and Eike Ritter4

1 School of Computer Science and IT, Univ. of Nottingham, UK,nza@cs.nott.ac.uk
2 Department of Computer Science, Univ. of Sheffield, UK,michael@dcs.shef.ac.uk

3 Xerox Palo Alto Research Center (PARC), USA,paiva@parc.xerox.com
4 School of Computer Science, Univ. of Birmingham, UK,exr@cs.bham.ac.uk

Abstract. We consider two systems of constructive modal logic which are com-
putationally motivated. Their modalities admit several computational interpreta-
tions and are used to capture intensional features such as notions of computation,
constraints, concurrency, etc. Both systems have so far been studied mainly from
type-theoretic and category-theoretic perspectives, but Kripke models for simi-
lar systems were studied independently. Here we bring these threads together and
prove duality results which show how to relate Kripke models to algebraic models
and these in turn to the appropriate categorical models for these logics.

1 Introduction

This paper is about relating traditional Kripke-style semantics for constructive modal
logics to their corresponding categorical semantics. Both forms of semantics have im-
portant applications within computer science. Our aim is to persuade traditional modal
logicians that categorical semantics is easy, fun and useful; just like Kripke semantics.
Additionally we show that categorical semantics generates interesting new constructive
modal logics, which differ somewhat from the traditional diet of intuitionistic modal
logics[WZ95].

The salient feature of the constructive modal logics considered in this paper is the
omission of the axioms3(A∨B)→ 3A∨3B and¬3⊥, which are typically assumed
for possibility3 not only in classical but also in intuitionistic settings. While in classical
(normal) modal logics these principles follow from the properties of necessity2 there
is no a priori reason to adopt them in an intuitionistic setting where the classical duality
between2 and3 breaks down and3 is no longer derivable from2. In fact, a growing
body of work motivated by computer science applications [Wij90,FM97,PD01] rejects
these principles from a constructive point of view. In this paper we will study the se-
mantics of two such constructive modal logics,CS4 andPLL, introduced below.

We explore three standard types of semantics, Kripke, categorical, and algebraic se-
mantics forCS4 andPLL. The algebraic semantics (CS4-modal algebra,PLL-modal
algebra) is concerned only with equivalence of and the relative strength of formulas in
terms of abstract semantic values (eg. truth values, proofs, constraints, etc...). It does not
explain why a formula is true or why one formula is stronger than another. If one is in-
terested in a more informative presentation and a concrete analysis of semantics, then a
Kripke or categorical semantics may be more useful. The former explains ‘meaning’ in



terms of worlds (in models) and validity of assertions at worlds (in models) in a classical
Tarski-style interpretation. The ‘semantic value’ is given by the set of worlds at which a
formula is valid. This form of semantics has been very successful for intuitionistic and
modal logics alike. More recent and less traditional is the categorical approach. Here,
we model not only the ‘semantic value’ of a formula, but also the ‘semantic value’ of
its derivations/proofs, usually in a given natural deduction calculus. Thus, derivations in
the logic are studied as entities in their own right, and have their own semantic objects
in the models. Many applications of modal logic to computer science rely on having a
term calculus for natural deduction proofs in the logic. Such a term calculus is a suitable
variant of theλ-calculus, which is the prototypical functional programming language.
From this point of view the semantic value of a formula is given by the collection of
normal form programs that witness its assertion. Having a calculus of terms correspond-
ing to derivations in the logic one obtains a direct correspondence between properties
of proofs and properties of programs in the functional programming language based on
these terms. For a discussion of the necessity modal operator2 and its interpretation as
the ‘eval/quote’ operator in Lisp the reader is refered to [GL96].

In this sense both Kripke semantics and categorical semantics, presented here for
CS4 and PLL, should be seen as two complementary elaborations of the algebraic
semantics. They are both intensional refinements of their corresponding modal algebras,
and have important applications within computer science. The natural correspondence
between the Kripke models and modal algebras will be stated and proved as aStone
Duality Theorem. This turns out to require a different approach compared to other more
standard intuitionistic modal logics, in particular as regards the3 modality. The other
correspondence, between modal algebras and corresponding categorical structures, is
essentially that between natural deduction proofs and the appropriateλ-calculus. This
is known as theExtended Curry-Howard Isomorphism. Whereas the extended Curry-
Howard isomorphism between intuitionistic propositional logic and the simply-typedλ-
calculus has been known since the late 60s, establishing such isomorphisms for modal
logics is a more recent development. In this paper we develop a suitable categorical
semantics and associatedλ-calculus forCS4 andPLL. It should be mentioned that the
results forPLL are not new (see [FM97] for the Kripke and [BBdP98] for categorical
semantics forPLL). Our contribution here is to show howPLL is related toCS4 and
how these known results forPLL can be derived from those fromCS4, or, to put it the
other way round, how the known constructions forPLL may be generalised toCS4.

2 The Constructive Modal SystemsCS4 and PLL

In this paper we take a fresh look at two prominent constructive modal extensions to
intuitionistic propositional logic (IPL), which are particularly interesting because of
their various applications in computer science.

To give the reader a taste for these applications, we list a few. Davies and Pfenning
[DP96] use the2-modality to give aλ-calculus for computation in stages. The idea
is that a term2t represents a delayed computation. Ghani et al. [GdPR98] investigate
refinements of this calculus which are suitable for the design of abstract machines.
Similar ideas relating2 with staged evaluation and the distinction between run-time and



compile-time semantics have been developed by Moggi et.al. [BMTS99]. Despeyroux
and Pfenning [DPS97] use a box modality to encode higher-order abstract syntax in
theorem-provers like Elf and Isabelle. Still another use of the2 modality, to model
thequote mechanism of Lisp, is proposed by Goubault-Larrecq [GL96]. A3-style
modality has been extensively used to distinguish a computation from its result in the
λ-calculus: Moggi’s [Mog91] influential work on computational monads describes the
computationalλ-calculus, which corresponds to an intuitionistic modal type theory with
a 3-like modality (see [BBdP98]). Fairtlough and Mendler [Men93,FMW97,Men00]
use the same modality, which they call©, in their work on lax logic for constraints and
hardware verification. The calculus has also been used for denotational semantics of
exception handling mechanisms, continuations, etc. On the syntactic side, it has been
used, in the monadic-style of functional programming to add a notion of ‘encapsulated
state’ to functional languages.

Despite their relevance for computer science these modal extensions ofIPL seem
to be less well investigated as modal logics in their own right, perhaps because of the
“unusual properties” of their associated modal operators.

2.1 Constructive S4

The first modal system, which we call Constructive S4 (CS4), is a version of the intu-
itionistic S4 first introduced by Prawitz in his 1965 monograph [Pra65]. The Hilbert-
style formulation ofCS4 is obtained by extendingIPL by a pair2,3 of S4-like intu-
itionistic modalities satisfying the axioms and the necessitation rule listed in Figure 1.
The normal basis ofCS4, i.e., consisting only of axioms2K and3K plus the axiom
¬3⊥ (which we reject, see below) has been introduced1 and motivated by Wijesek-
era [Wij90] as a predecessor to constructive concurrent dynamic logic. The practical
importance ofCS4 as a type system for functional programming is evident from the
literature, e.g. as cited in the beginning of this section, though most applications so far
focus on the2 modality. The formal role of3 and its interaction with2 has recently
been studied systematically by Pfenning and Davies [PD01].

2K : 2(A→ B)→ (2A→ 2B) 3K : 2(A→ B)→ (3A→ 3B)
2T : 2A→ A 3T : A→ 3A
24 : 2A→ 22A 34 : 33A→ 3A
Nec : If A is a theorem then2A is a theorem.

Fig. 1. Hilbert-style system for Constructive S4

The natural deduction formulation ofCS4 is subject to some controversy. We recall
it in the style of Bierman and de Paiva [BdP96]. The naive introduction rule for2 (corre-
sponding to the necessitation ruleNec) insists that all of the undischarged assumptions
at the time of application are modal, i.e. they are all of the form2Ai. However, the

1 Wijesekera considers a first order system, to be precise.



fundamental feature of natural deduction is that it isclosed under substitutionand this
naive rule will not be closed under substitution, i.e. substituting a correct derivation in
another correct derivation will yield an incorrect one (if this substitution introduces non-
modal assumptions). We conclude that2I must be formulated as in Figure 2, where the
substitutions are given explicitly. The same sort of problem arises in the rules for3E
and the same solution (of explicit substitutions) can be used, see the rule3E in Figure 2.

Both problems were first observed by Prawitz, who proposed a syntactically more
complicated way of solving it [Pra65]. An interesting alternative approach has recently
been presented by Pfenning and Davies [PD01], which (essentially) involves two kinds
of variables, and two kinds of substitution. Note that in our solution the discharging
brackets are used in a slightly different way from traditional natural deduction. In the
introduction rule for2 they mean, dischargeall assumptions (which must be all boxed
in this rule).

...
2B

B

(2E)

[2A1 · · ·2An]
...

...
...

2A1 . . . 2An B

2B

(2I)

...
B

3B

(3I)

[2A1 · · ·2An B]
...

...
...

...
2A1 . . . 2An 3B 3C

3C

(3E)

Fig. 2.Natural Deduction rules for Constructive S4

The systemCS4 is the weakest among the variants of intuitionistic S4 discussed in
the literature. In particular, it does not prove the distribution of the possibility operator
over disjunction3(A ∨ B) → 3A ∨ 3B, nor does it assume¬3⊥, i.e., that possi-
bly falsum (3⊥) and falsum (⊥) are equiprovable (which is the nullary form of the
distribution). This version of non-classical S4 without distributivity of3 over∨ is ex-
tremely well-behaved. As we will see there is a complete version of the Curry-Howard
Isomorphism for it.

2.2 Propositional Lax Logic

The second constructive modal logic we consider is an extension ofIPL that features a
single modality3 satisfying the axioms

3T : A→ 3A
34 : 33A→ 3A
3F : (A→ B)→ 3A→ 3B.



The third axiom is known (categorically) as ‘functorial strength’. This system is dis-
cussed under different names and in slightly differing but equivalent axiomatic pre-
sentations, such asComputational Logic[BBdP98] orPropositional Lax Logic(PLL)
[FM97]. Henceforth we shall call itPLL. The natural deduction system contains the
following rules for3 ([Men93]):

...
B

3B

(3I)

[A]
...

...
3A 3B

3B

(3E)

PLL also has a colourful history. As a modal logic it was invented in the forties by
Curry [Cur57] (who seems to have dropped it again because of its wild properties) and
independently rediscovered in the nineties by Benton et al. and Fairtlough and Mendler,
who used the symbol© for the modality, as the Curry-Howard isomorphic version of
Moggi’s computational lambda-calculus. As an algebra the systemPLL is well known
in abstract topology. The operator© arises naturally as a (strong, or multiplicative)
closure operator on the lattice of open sets, or more generally as a so-called nucleus
in the theory of topoi and sheafification [Joh82]. From this topological perspective,
Goldblatt studied a system identical toPLL accommodating Lawvere’s suggestion that
the©modality means “it is locally the case that” by interpreting this in various ways to
mean “at all nearby points” [Gol81,Gol93]. The algebraic properties of such operators
(on complete Heyting algebras) have been explored by Macnab [Mac81], who calls
them “modal operators”.

In this paper we show howPLL can be naturally seen as a specialCS4 theory
or CS4 algebra in the sense that it can be obtained fromCS4 by adding the axiom
A→ 2A. These results identify© as a constructive modality of possibility and provide
a satisfactory explanation for why inPLL a modality2 is missing: it is implicitly built
into the semantics already.

3 Kripke models

Our first step is to develop a suitable Kripke model theory forCS4. While it is easy to
agree that a Kripke model of constructive modal logic should consist of a set of worlds
W and two accessibility relations, one intuitionistic≤ and the other modalR, it is not so
clear how these relations should interact (frame conditions) and just how they should be
used to interpret specifically the3 modality. The mainstream approach as exemplified
by Ewald [Ewa86], Fischer-Servi [FS80], Plotkin and Stirling [PS86], Simpson [Sim94]
is based on the analogy of2 with ∀ and of3 with ∃-quantification over the modal
accessibilityR. Reading these quantifiers intuitionistically, relative to≤, one arrives at
the semantic interpretationw |= 2A iff ∀v. w ≤ v ⇒ ∀u. v R u ⇒ u |= A for
necessity, and

w |= 3A iff ∃u. w R u & u |= A (1)



for possibility. Indeed, as the shown in the literature, this gives a fruitful basis for intu-
itionistic modal logics. Unfortunately, it is not suitable forCS4, since it forces the ax-
iom3(A∨B)→ (3A∨3B) to hold, which we want to avoid. It also requires an extra
frame condition to ensure hereditariness of truth,viz., thatw |= 3A andw ≤ v implies
v |= 3A. Hereditariness, however, can also be achieved simply by∀-quantifying over
all ≤-successors in the interpretation of3:

w |= 3A iff ∀u. w ≤ u⇒ ∃v. u R v & v |= A. (2)

Not only does this away with the extra frame condition to force3 hereditary along≤, it
also eliminates the unwanted axiom3(A∨B)→ (3A∨3B). In fact, as it turns out this
works forCS4. This interpretation (2) of3, as far as we are aware, has been introduced
by Wijesekera [Wij90] to capture non-deterministic computations and independently in
[FM97] as an adequate Kripke interpretation of truth “up to constraints”. In both cases
the absence of the axioms3(A ∨ B) → (3A ∨ 3B) is a natural consequence of the
semantics.

Wijesekera only considered the normal base2K,3K of CS4, yet included the
axiom¬3⊥. To eliminate the axiom¬3⊥ we follow [FM97] in permitting explicit
fallible worlds in our models. What remains, then, is to find suitable frame conditions
on ≤ andR that are characterised by theCS4 axioms2T,24,3T,34. These are
incorporated into the following notion ofCS4 model:

Definition 1. A Kripke model ofCS4 is a structureM = (W,≤, R, |=), whereW is
a non-empty set,≤ andR are reflexive and transitive binary relations onW , and|= a
relation between elementsw ∈W and propositionsA, writtenw |= A (“A satisfied at
w in M ”) such that:

– ≤ is hereditary with respect to propositional variables, that is, for every variablep
and worldsw, w′, if w ≤ w′ andw |= p, thenw′ |= p.

– R and≤ are related as follows: ifwRw′ andw′ ≤ v then there existsv′ such that
w ≤ v′ andv′Rv. In other words:(R ; ≤) ⊆ (≤ ; R).

– The relation|= has the following properties:
w |= >;
w |= A ∧B iff w |= A andw |= B;
w |= A ∨B iff w |= A or w |= B;
w |= A→ B iff ∀w′. w ≤ w′ ⇒ (w′ |= A⇒ w′ |= B)
w |= 2A iff ∀w′. w ≤ w′ ⇒ ∀u. w′Ru⇒ u |= A
w |= 3A iff ∀w′. w ≤ w′ ⇒ ∃u. w′Ru ∧ u |= A

Notice that we do not have the clausew 6|= ⊥, i.e., we allow inconsistent worlds.
Instead, we have

– if w |= ⊥ andw ≤ w′, thenw′ |= ⊥, and
– if w |= ⊥, then for every propositional variablep,w |= p (to make sure that⊥ → A

is still valid).

As usual, a formulaA is true in a modelM = (W,≤, R, |=) if for everyw ∈ W ,
w |= A. We sometimes writeM,w |= A when we want to make the model explicit. A
formulaA is valid (|= A) if it is true in all models; a formula is satisfiable if there is a



model and aconsistentworld where it is satisfied. A formulaA is alogical consequence
of a set of formulaeΓ if for everyM,w if M,w |= Γ , thenM,w |= A.

Observe that under the translation of intuitionistic logic into classical S4 which
introduces a modality2I corresponding to the intuitionistic accessibility relation≤,
our modalities2 and3 are translated as2I2M and2I 3M , respectively (where2M
and3M are modalities corresponding toR). This means that our variant of S4 does
not fall directly in the scope of Wolter and Zakharyaschev’s analysis of intuitionistic
modal logics as classical bimodal logics in [WZ97] since they assume3 to be a normal
modality. However, analogous techniques could probably be used to give a new proof
of decidability and finite modal property ofCS4 andPLL.

Theorem 1. CS4 is sound and strongly complete with respect to the class of models
defined above, that is, for every set of formulaeΓ and formulaA, we haveΓ `CS4

A ⇔ Γ |= A.

We can use Theorem 1 to give a new soundness and completeness theorem forPLL.
This is based on the observation thatPLL models are a sub-class ofCS4 models:

Definition 2. A Kripke model forPLL is a Kripke model forCS4 whereR is heredi-
tary, that is, for every formulaA, if w |= A andwRv, thenv |= A.

The latter requirement corresponds to the strength axiom. It is in fact equivalent to
the axiomA→ 2A, so that2 becomes redundant in Kripke models forPLL. An alter-
native (slightly stronger) definition to the same effect given by Fairtlough and Mendler
requires thatR is a subset of≤.

Theorem 2. PLL is sound and strongly complete with respect to the class of models
defined above.

Proof. Soundness ofPLL follows from soundness ofCS4 and the fact thatPLL-models
satisfy the axiom schemeA → 2A, which renders the strength3F axiom derivable
from 3K of CS4.

For completeness consider an arbitrary setΓ of PLL-formulas, and aPLL-formula
B such thatΓ 6`PLL B. Then, it is not difficult to see thatΓ ∗ 6`CS4 B whereΓ ∗

is the theoryΓ extended by all instances of the schemeA → 2A. For otherwise, if
Γ ∗ `CS4 B, we could transform this derivation into a derivationΓ `PLL B simply by
dropping all occurrences of2 in any formula, which means that every use of aCS4-
axiom becomes an application of aPLL-axiom, and any use of an axiomA → 2A or
ruleNec becomes trivial. Note, this holds since if we drop all2 in aCS4 axiom, we get
a PLL-axiom. By strong completeness ofCS4 we conclude there exists aCS4-model
M such thatM |= Γ ∗ butM 6|= B. But then not onlyM |= Γ but alsoM validates all
instances ofA→ 2A, which means thatM is aPLL-model.

4 Modal Algebras and Duality

There is no unique ‘right’ Kripke semantics for a given system of modal logic. In gen-
eral, the fit between modal (intuitionistic or classical) logics and Kripke structures is



not perfect: apart from several versions of Kripke semantics for the same logic, which
already seems suspect to category theorists, there are logics which are not complete for
any Kripke semantics ([Fin74,Tho74]).Modal algebrashave the definite advantage of
fitting the logics much better.

One can think of an algebra as a collection of syntactic objects, e.g. formulae of a
logic. Representation theorems for algebras show how given an algebra one can build
a ‘representation’ for it - a structure which is a ‘concrete’ set-theoretic object, e.g. a
Kripke model2.

We define modal algebras corresponding toPLL andCS4 below and show how to
construct representations for them. Since the modal algebras can be directly obtained
from the respective categorical models, and modal algebras can be shown (see below)
to be Stone-dually related to our Kripke models, we obtain an algebraic link (albeit
a weak one) between Kripke models and categorical models for the two constructive
modal systems considered.

Recall that aHeyting algebraH is a structure of the form〈A,≤,×,+,⇒, 0〉where
A is a set of objects (one example would be formulae),≤ is a partial order (for formulae,
a ≤ b means ‘a implies b’),× is a product (which corresponds to∧ in intuitionistic
logic), + a sum (corresponds to∨),⇒ pseudocomplement (corresponds to→) and0
the least element (⊥).

We introduce two additional operators, corresponding to the modalities. Note that
2 distributes over×, but3 does not distribute over+.

Definition 3. A CS4-modal algebraA = 〈A,≤,×,+,⇒, 0,2,3〉 consists of a Heyt-
ing algebra〈A,≤,×,+,⇒, 0〉 with two unary operators2 and3 onA, such that for
everya, b ∈ A,

2(a× b) = 2a×2b 2a ≤ a a ≤ 3a
3a ≤ 3(a+ b) 2a ≤ 22a 33a ≤ 3a
1 ≤ 21 2a×3b ≤ 3(2a× b).

Next, we identify the corresponding algebraic structure forPLL, which are also known,
in a somewhat different axiomatisation, as “local algebras” [Gol76]:

Definition 4. A PLL-modal algebraA = 〈A,≤,×,+,⇒, 0,3〉 consists of a Heyting
algebra〈A,≤,×,+,⇒, 0〉with a unary operator3 onA, such that for everya, b ∈ A,

3a ≤ 3(a+ b) a ≤ 3a 33a ≤ 3a a×3b ≤ 3(a× b).

Obviously, every Kripke modelM for CS4 or PLL gives rise to a corresponding
modal algebraM+ (take the set of all definable sets of possible worlds).

Conversely, every modal algebra gives rise to a so-calledgeneral frame. A general
frame is a structure which consists of a set of possible worldsW , two accessibility re-
lations and a collectionW of subsets ofW which can serve as denotations of formulae.
Intuitively, W should contain{w:w |= p} for every propositional variablep and be
closed under intersection, union and operations which give the set of worlds satisfying
2ϕ (3ϕ) from the set of worlds satisfyingϕ. (For more background, see for example
[Ben83].)

2 More precisely, a general frame; see the discussion below.



Here, we will be somewhat sloppy and identify elements of the algebra with logical
formulae straightaway. We assume that some subsetP of A is arbitrarily designated as
a set of propositional variables;×, +,⇒ and0 are interpreted as∧, ∨,→ and⊥. Then
we can formulate the representation theorem for models instead of general frames:

Theorem 3 (Representation forCS4). Let A be a CS4-modal algebra. Then the
Stone representation ofA, SR(A) = (W ∗, R∗,≤∗, |=∗) is a Kripke model forCS4,
where

1. W ∗ is the set of all pairs(Γ,Θ) whereΓ ⊆ A is a prime filter, andΘ ⊆ A
an arbitrary set of elements such that for all finite, nonempty, choices of elements
c1, . . . , cn ∈ Θ, 3(c1 + · · ·+ cn) 6∈ Γ .

2. (Γ,Θ) ≤∗ (Γ ′, Θ′) iff Γ ⊆ Γ ′.
3. (Γ,Θ)R∗(Γ ′, Θ′) iff ∀a. 2a ∈ Γ ⇒ a ∈ Γ ′ andΘ ⊆ Θ′.
4. For all a ∈ A, (Γ,Θ) |=∗ a iff a ∈ Γ .

Let us call pairs(Γ,Θ) withΓ,Θ ⊆ A consistent theoriesif for any, possibly empty,
choice of elementsb1, . . . , bm in Γ and any non-empty choice of elementsc1, . . . , cn ∈
Θ, b1 × . . . × bm 6≤ 3(c1 + · · · + cn). Then, the worlds ofSR(A) are simply the
consistent theories(Γ,Θ) whereΓ is a prime filter. In the completeness proof we also
need a slightly stronger notion of consistency as follows: Fora ∈ A, a theory(Γ,Θ)
is a-consistentif for any choice of elementsb1, . . . , bm in Γ andc1, . . . , cn ∈ Θ, b1 ×
. . .× bm 6≤ (a+ 3(c1 + · · ·+ cn)). This includes the degenerate casen = 0 where we
simply requireb1 × . . .× bm 6≤ a.

The proof of our Stone Representation Theorem 3 relies on the following lemma.

Lemma 1 (Saturation Lemma).Let a ∈ A and(Γ,Θ) an a-consistent theory in the
CS4-algebraA. Then(Γ,Θ) has a saturateda-consistent extension(Γ ∗, Θ), such that
Γ ∗ is a prime filter andΓ ⊆ Γ ∗.
We can now extract without extra effort a Stone Representation forPLL algebras from
that forCS4 algebras, identical to the one implicit in the completeness proof given in
Fairtlough and Mendler [FM97].

Theorem 4 (Representation forPLL). LetA be aPLL-modal algebra. Then the Stone
representation ofA, SR(A) = (W ∗, R∗,≤∗, |=∗) is a Kripke model forPLL, where
W ∗,≤∗, |=∗ are as above and(Γ,Θ)R∗(Γ ′, Θ′) iff Γ ⊆ Γ ′ andΘ ⊆ Θ′.
Proof. Observe that everyPLL algebraA is at the same time aCS4 algebraA′ where
the operator2 is taken to be the identity function. Hence, we can construct itsCS4
Stone representationSR(A′) as in Theorem 3, which is aCS4 algebra. Now, what
properties does the relationR∗ have inSR(A′)? Well,(Γ1, Θ1) R∗ (Γ2, Θ2) iff
∀a. 2a ∈ Γ1 ⇒ a ∈ Γ2 andΘ1 ⊆ Θ2. But since2 is the identity operator, this is the
same asΓ1 ⊆ Γ2 andΘ1 ⊆ Θ2 as defined in Theorem 4. Observe further thatR∗ is a
subrelation of≤∗, which means thatR∗ is hereditary. Thus,SR(A′) is aPLL model.

Section 6 introduces categorical models forCS4 andPLL. Observe that one can
view categorical models as modal algebras where the partial order relation≤ is replaced
by a collection of morphisms. Intuitively, (again thinking of objects as formulae) while
a ≤ b in an algebra means thatb is implied bya, the category has possibly several
morphisms froma to b labelled by encodings of corresponding derivations ofb from a.



5 Discussion on Kripke Semantics

Since our Kripke semantics forCS4 is new it deserves some further justification and
discussion, which we give in this section.

First, how do our models relate to Wijesekera’s? Let us call the class of structures
M = (W,≤, R, |=) with ≤ reflexive and transitive but arbitraryR CK-models(i.e.,
drop the requirement thatR is reflexive and transitive as well as the frame condition
R;≤ ⊆ ≤;R), and further those in which for all worldsw 6|= ⊥ infallible CK models.
Then, Wijesekera [Wij90] showed3 that the theoryIPL + 2K + 3K + ¬3⊥ with the
rules of Modus Ponens andNec is sound and complete for the class of infallibleCK
models. The proof of Wijesekera can be modified to show thatCK = IPL + 2K+ 3K
is sound and complete for allCK models. OurCS4-models may then be seen as the
special class ofCK models characterised by the additional axioms3T,2T,34,24.

Following [FM97] we permittedfallible worldsto render the formula¬3⊥ invalid.
This makesCS4 different from traditional intuitionistic modal logics which invari-
ably accept this axiom. Fallible worlds were used originally to provide an intuitionis-
tic meta-theory for intuitionistic logic,e.g.,[TvD88,Dum77]. For intuitionistic proposi-
tional logics, with a classical meta-theory, fallible worlds are redundant. However, this
is no longer true for modal logics. There, the presence or absence of fallible worlds
is reflected in the absence or presence of the theorem¬3⊥. In particular note that
in the standard classical setting, i.e., without fallible worlds andw |= 3A meaning
∃v. w R v & v |= A, the axiom¬3⊥ (as well as3(A ∨ B) → 3A ∨ 3B) is
automatically validated.

It is not only the fallible worlds but also the extension by setsΘ, capturing heredi-
tary refutation information, that distinguishes the representation of constructive modal
logic, such asCS4, from that for standard intuitionistic modal logics, such as those
of [PS86,FS80,Ewa86]. Indeed, if the axioms¬3⊥ and3(φ ∨ ψ) → 3φ ∨ 3ψ are
adopted the setsΘ and fallible worlds become redundant. Without these axioms, how-
ever, we also need the “negative” information inΘ to characterise truth at a world fully.
It is also worthwhile to note that the model representation of Thm. 3 forCS4 is simpler
than the one given by Wijesekera [Wij90] in the completeness proof forCK + ¬3⊥.
There, theΘ are (essentially)sets of setsof propositions, in which every element inΘ
is asetof all possible future worlds for(Γ,Θ) that are accessible throughR∗. This too,
expresses negative information, though of a second-order nature. A quite different, but
still second-order representation ofCK models has been proposed by Hilken [Hil96].
As we have shown, however, the representation forCS4 can be done in a first-order
fashion.

Our constructive S4 models satisfy the inclusionR;≤ ⊆ ≤;R, a frame condition
that is typically assumed in standard intuitionistic modal logic already for systemIK.
One may wonder about the converse≤;R ⊆ R;≤ of this inclusion. One can show that in
our models it generates the independent axiom scheme((2A→ 3B)∧2(A∨3B))→
3B, thus inducing a proper extension ofCS4.

3 Actually, Wijesekera also lists the axiom2A ∧ 3(A → B) → 3B, but this is derivable
already.



As pointed out before, traditional intuitionistic modal logics such as those consid-
ered by Fischer-Servi [FS80] or Plotkin and Stirling [PS86] adopt a fundamentally dif-
ferent interpretation of3, definingw |= 3A iff ∃v. w R v & v |= A. This enforces
validity of 3(A∨B)→ (3A∨3B) but requires a frame condition≤−1;R ⊆ R;≤−1

(confluence of≤ andR) to make3 hereditary along≤. It is not surprising, then, that
for our constructive modal models, where hereditariness is built in by the semantic in-
terpretation, this frame condition obtains the axiom scheme3(A∨B)→ (3A∨3B),
again inducing a proper extension.

We leave it as an open question if the above-mentioned axioms((2A → 3B) ∧
2(A∨3B))→ 3B or3(A∨B)→ (3A∨3B) are complete for the frame conditions
≤;R ⊆ R;≤ or ≤−1;R ⊆ R;≤−1, respectively. At least forPLL [FM97] it is known
that≤−1;R ⊆ R;≤−1 is completely captured by the axiom3(A∨B)→ (3A∨3B),
and in [Wij90] this axiom is linked with sequentiality ofR.

6 Categorical models

Categorical models distinguish between different proofs of the same formula. A cat-
egory consists of objects, which model the propositional variables, and for every two
objectsA andB each morphism in the category fromA toB, corresponds to a proof of
B usingA as hypothesis.

Cartesian closed categories(with coproducts) are the categorical models for intu-
itionistic propositional logic. For a proper explanation the reader should consult Lam-
bek and Scott [LS85]; Here we just outline the intuitions. Conjunction is modelled by
cartesian products, a suitable generalisation of the products in Heyting algebras. The
usual logical relationship between conjunction and implication

A ∧B −→ C if and only ifA −→ (B → C)

is modelled by an adjunction and this defines categorically the implication connective.
Thus we require that for any two objectsB andC there is an objectB → C such that
there is a bijection between morphisms fromA ∧ B to C and morphisms fromA to
B → C. Disjunctions are modelled by coproducts, again a suitable generalisation of
the sums of Heyting algebras. True and false are modelled by the empty product (called
a terminal object) and co-product (the initial object), respectively. Finally negation, as
traditional in constructive logic, is modelled as implication into falsum. A cartesian
closed category (with coproducts) is sometimes shortened to a ccc (respectively a bi-
ccc). Set, the category where the objects are sets and morphisms between sets are
functions, is the standard example of a bi-cartesian closed category.

To present a categorical model of constructive S4 we must add to a bi-ccc the struc-
ture needed to model the modalities. In previous work [BdP96] it was shown that to
model the S4 necessity2 operator one needs amonoidal comonad. Such a monoidal
comonad consists of an endofunctor2: C −→ C together with natural transformations
δA: 2A −→ 22A andεA: 2A −→ A andmA,B: 2A×2B −→ 2(A×B) and a map
m1: 1 → 21, satisfying some commuting conditions. These natural transformations
model the axioms4 andT together with the necessitation rule and theK axiom.



Here we assume that the modal operator3 is dually modelled by amonadwith
certain special characteristics: namely we want our monad to bestrongwith respect to
the2 operator, i.e. we assume a natural transformationstA,B: 2A×3B −→ 3(2A×
B) satisfying the conditions detailed in [Kob97]. The strength is needed to model the
explicit substitution in the3E -rule.

Definition 5. A CS4-category consists of a cartesian closed categoryC with coprod-
ucts, a monoidal comonad(2, δ, ε,m−,−,m1) where2: C −→ C and a 2-strong
monad(3, µ, η) where3: C −→ C.

The soundness theorem shows in detail how the categorical semantics models the
modal logic.

Theorem 5 (Soundness).LetC be anyCS4-category. Then there is a canonical inter-
pretation[[ ]] of CS4 in C such that

– a formulaA is mapped to an object[[A]] of C;
– a natural deduction proofψ of B using formulaeA1, . . . , An as hypotheses is

mapped to a morphism[[ψ]] from [[A1]]× · · · × [[An]] to [[B]];
– each two natural deduction proofsφ andψ of B using formulaeA1, . . . , An as

hypotheses which are equal (modulo normalisation of proofs) are mapped to the
same morphism, in other words[[φ]] = [[ψ]].

A trivial degenerate example of anCS4-category consists of taking any bi-ccc, say
Set for example and considering the identity functor (both as a monoidal comonad and
as monad) on it. Less trivial, but still degenerate models are Heyting algebras (the poset
version of a bi-ccc) together with a closure and a co-closure operator. Non-degenerate
models (but quite complicated ones) can be found in [GL96]. To prove categorical com-
pleteness we use a term model construction.

Theorem 6 (Completeness).

(i) There exists aCS4-category such that all morphisms are interpretations of natu-
ral deduction proofs.

(ii) If the interpretation of two natural deduction proofs is equal in allCS4-categories,
then the two proofs are equal modulo proof-normalisation in natural deduction.

A categorical model ofPLL consists of a cartesian closed category with a strong
monad. These models were in fact the original semantics for Moggi’s computational
lambda-calculus andPLL can be seen as reverse engineering from that [BBdP98].
Hence we refrain from stating categorical soundness and completeness for this system,
but of course they hold as expected [Kob97].

In the logic,PLL arises as a special case ofCS4 when we assume the derivability of
A → 2A. A similar statement holds in category theory. We have an inclusion functor
from the category ofPLL-categories into the category ofCS4-categories: eachPLL-
category is aCS4-category where the co-monad is the identity functor. Conversely,
eachCS4-category such that2A is isomorphic toA is aCS4-category.



7 Conclusions

This paper shows how traditional Kripke semantics for two systems of intuitionistic
modal logic,CS4 and PLL, can be related via duality theory to the categorical se-
mantics of (natural deduction) proofs for these logics. The associated notions of modal
algebras serve as an intermediate reference point. From this point of view the results
of this paper may be seen as presenting two kinds of representations for these modal
algebras.

The first representation explains the semantics of an element in the algebra in terms
of sets of worlds and truth within Kripke models. To this end we have developed an
appropriate class of Kripke models forCS4 and proved a Stone representation theorem
for it. As far as we are aware the model representation forCS4 is new. Its essential first-
order character contrasts with the second order representations for the weaker system
CK given by Wijesekera and Hilken. We have also shown how the canonical model
construction of [FM97] forPLL follows from that forCS4 as a special case. Goldblatt
[Gol76] proved a standard representation theorem forPLL algebras in terms ofJ -
frames, that only requires prime filters rather than pairs(Γ,Θ). However, Goldblatt’s
work explains© as a constructive modality ofnecessity, which is an altogether different
way to look at©.

The contribution of this paper regardingPLL lies in showing that the modality©
of PLL is a constructive modality ofpossibility, in the sense that it can be obtained
by adding toCS4 the axiomA → 2A. This is not the only way to derivePLL from
CS4, but probably the most simple one so far proposed. Pfenning and Davies [PD01]
give a full and faithful syntactic embeddingPLL ↪→ CS4 that reads©A as32A and
A→ B as2A→ B. Both possibilities can be used to generate different semantics for
PLL from that ofCS4. The embedding discussed in this paper most closely reflects the
notion of constraint models forPLL introduced in [FM97].

The second representation given in this paper explains the semantics of an element
in the algebra in terms of provability in a natural deduction calculus. The representation
theorem establishes aλ-calculus and Curry-Howard correspondence forCS4. In gen-
eral, modal algebras can be extended to categorical models by adding information about
proofs (replacing≤ of the algebra by the collection of morphisms of the category), but
this process is not trivial.

This extra information about proofs is crucial in applications of logic to model com-
putational phenomena. Whileλ terms (encodings of proofs in intuitionistic proposi-
tional logic) can be seen as semantic counterparts of functional programs, addition of
modalities to intuitionistic propositional logic makes it possible to obtain more sophisti-
cated semantics of programs reflecting such computational phenomena as, for example,
non-termination, non-determinism, side effects, etc. [Mog91]. Information about proofs
can also be necessary in other applications of logic to computer science, where not just
the truth (or falsity) of a formula is important, but also the justification (proof) of the
claimed truth (see e.g. [Men93,FMW97,Men00]). One example we are considering is
the verification of protocols.

The results in this paper partially depend on having a natural deduction presentation
of the logic following the standard Prawitz/Dummett pattern of logical connectives de-
scribed by introduction and elimination rules. This is true forCS4 and forPLL, but not



for weaker logics, for example for a modal logic where2 satisfies only theK-axiom.
Thus, our main challenge is to extend this work on categorical semantics to other modal
logics.

Next we would like to apply our techniques to constructive temporal logics. Another
direction we would like to pursue is providing concrete mathematical models forCS4.
Some such applications might be generated as generalisation of our previous work on
constraint verification inPLL. Meanwhile we shall continue our work on applications
of constructive modal logics to programming.
Acknowledgements The second author is supported by EPSRC (grant GR/M99637).
We would like to thank Gavin Bierman, Richard Crouch and Matt Fairtlough for their
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Appendix

The full proofs of the main theorems are collected in this appendix.

Theorem 1 CS4 is sound and complete with respect to the class of models defined
above, that is, for every set of formulaeΓ and formulaA, Γ `CS4 A ⇔ Γ |= A.

Proof. The soundness proof goes by induction on the length of a derivation ofA from
Γ . We show that all axioms are valid and inference rules preserve validity. The intuition-
istic part is not problematic. As for the modal axioms,2K and3K are valid just due
to truth definitions and transitivity of≤. 3T and2T are valid becauseR is reflexive.



34 and24 are valid because of transitivity ofR. The latter also depends on transitivity
of ≤;R, which follows from the frame conditionR;≤ ⊆ ≤;R and the fact that both
R and≤ are transitive. In these proofs we also need that≤ is hereditary, reflexive and
transitive. The necessitation ruleNec follows from the fact that if a formula is true in
all models then it must be satisfied at all worlds in all models since every world induces
a model. Completeness follows from the Stone Representation Theorem 3.

Lemma 1 [Saturation Lemma] Let a be element of the algebra, and(Γ,Θ) an a-
consistent theory. Then(Γ,Θ) has a saturateda-consistent extension(Γ ∗, Θ), such
thatΓ ∗ is a prime filter andΓ ⊆ Γ ∗.

In the proof of the Saturation Lemma and the following proof of the Stone Rep-
resentation Theorem we abbreviate consistency of a theory(Γ,Θ) asΓ 6≤ 3Θ, and
a-consistencyby Γ 6≤ a + 3Θ, remembering that only in the second case we permit
the choice fromΘ to be empty, in which case the disjunct3Θ disappears rather than
being taken as3⊥.

Proof. We obtain(Γ ∗, Θ) in the usual way by enumerating all elements of the algebra
(therefore, we assume that this is possible)

c0, c1, . . . , cn, cn+1, . . .

with infinite repetitionof every element, and by building up a hierarchy ofa-consistent
theories

(Γ0, Θ) ⊆ (Γ1, Θ) ⊆ · · · ⊆ (Γn, Θ) ⊆ (Γn+1, Θ) ⊆ · · ·

starting withΓ0 =df Γ and such thatΓn+1 =df (Γn∪{cn} if the theory(Γn∪{cn}, Θ)
is a-consistent, otherwiseΓn+1 =df Γn. Then, putΓ ∗ =df

⋃
n∈ω Γn.

• First observe thata-consistency of(Γ ∗, Θ) follows from a-consistency of each
pair (Γn, Θ).
• We show thatΓ ∗ is upward closed. To this end supposeb ∈ Γ andb ≤ c. For

somen, b ∈ Γn. Since our enumeration is with infinite repetitionc = cm for some
m ≥ n. Then, we claim thatcm ∈ Γm+1. For otherwise,(Γm ∪ {cm}, Θ) would have
to bea-inconsistent, or(Γm ∪ {cm}) ≤ a + 3Θ. But sinceΓn ⊆ Γm, we also have
b ∈ Γm andb ≤ c, which would implyΓm ≤ a+ 3Θ, contradictinga-consistency of
(Γm, Θ). Hence,c = cm ∈ Γm+1 ⊆ Γ ∗ as desired.
• It remains to be seen thatΓ ∗ is prime, i.e. ifc+ c′ ∈ Γ ∗ thenc ∈ Γ ∗ or c′ ∈ Γ ∗.

Supposec + c′ ∈ Γ ∗, i.e. c + c′ ∈ Γn for somen. Again, we can find indicesm ≥ n
andm′ ≥ n such thatc = cm andc′ = c′m′ . Let k be the maximum of both. We
claim thatcm ∈ Γk+1 or cm′ ∈ Γk+1. Suppose otherwise, i.e. both(Γk ∪ {cm}, Θ)
and(Γk ∪ {cm′ , Θ) area-inconsistent. Thus,(Γ 1

k ∪ {cm}) ≤ a + 3Θ1 and (Γ 2
k ∪

{cm′}) ≤ a+3Θ2, whereΓ ik andΘi are some subsets of propositions fromΓk andΘ,
respectively. LetΓ 3

k = Γ 1
k ∪Γ 2

k andΘ3 = Θ1∪Θ2. Then, we can derive(Γ 3
k ∪{cm}) ≤

a+3Θ3 and(Γ 3
k ∪{cm′} ≤ a+3Θ3 From this, we get (Γ 3

k ∪{cm+cm′}) ≤ a+3Θ3

But sincecm + cm′ = c + c′ ∈ Γn ⊆ Γk by assumption, finallyΓk ≤ a + 3Θ in
contradiction toa-consistency of(Γk, Θ). This proves our claim thatcm ∈ Γk+1 or
cm′ ∈ Γk+1, hencec ∈ Γ ∗ or c′ ∈ Γ ∗.



Theorem 3 [Representation forCS4] LetA be aCS4-modal algebra. Then the Stone
representation ofA, SR(A) = (W ∗, R∗,≤∗, |=∗) is a Kripke model forCS4, where

1. W ∗ is the set of all pairs(Γ,Θ) whereΓ ⊆ A is a prime filter, andΘ ⊆ A
an arbitrary set of elements such that for all finite, nonempty, choices of elements
c1, . . . , cn ∈ Θ, 3(c1 + · · ·+ cn) 6∈ Γ .

2. (Γ,Θ) ≤∗ (Γ ′, Θ′) iff Γ ⊆ Γ ′
3. (Γ,Θ)R∗(Γ ′, Θ′) iff ∀a. 2a ∈ Γ ⇒ a ∈ Γ ′ andΘ ⊆ Θ′.
4. For all a ∈ A, (Γ,Θ) |=∗ a iff a ∈ Γ .

Proof. ConsiderSR(A) as defined in the theorem. We must show that it satisfies the
definition of a Kripke model for constructive S4.

It is easy to see thatR is reflexive and transitive (inequalities corresponding to the
axioms T and 4 take care of that). Obviously,≤ is reflexive, transitive and hereditary.

Finally, to verify the inclusion ofR∗;≤∗ in ≤∗;R∗ let the accessibilities

(Γ1, Θ1)R∗(Γ2, Θ2) ≤∗ (Γ3, Θ3)

in W ∗ be given. Consider the pair(Γ1, ∅) ∈W ∗. We are going to show that

(Γ1, Θ1) ≤∗ (Γ1, ∅)R∗(Γ3, Θ3).

Trivially, (Γ1, Θ1) ≤∗ (Γ1, ∅). Moreover, by definition ofR∗ and≤∗, Γ2
1 ⊆ Γ2 ⊆ Γ3,

whereΓ2 is {a:2a ∈ Γ}. This proves(Γ1, ∅)R∗(Γ3, Θ3), whenceR∗;≤∗⊆≤∗;R∗
overall.

Now we need to show that(Γ,Θ) |=∗ a satisfies the properties of a constructive
modal validity relation.

If a is of the formb× c or b+ c, the proof is easy (for disjunction, we use the fact
thatΓ is a prime filter). Ifa is of the formb ⇒ c, the proof uses the fact thatSR(A)
contains pairs(Γ,Θ) for all prime filtersΓ .

Suppose2a ∈ Γ , (Γ,Θ) ≤∗ (Γ1, Θ1) and(Γ1, Θ1)R∗(Γ2, Θ2). We want to show
thata ∈ Γ2. Since(Γ,Θ) ≤∗ (Γ1, Θ1), 2a ∈ Γ1. Since(Γ1, Θ1)R∗(Γ2, Θ2), a ∈ Γ2
as desired.

Suppose∀(Γ1, Θ1)((Γ,Θ) ≤∗ (Γ1, Θ1) ⇒ ∀(Γ2, Θ2)((Γ1, Θ1)R∗(Γ2, Θ2) ⇒
a ∈ Γ2)). We want to show2a ∈ Γ . Consider the theory(Γ2, ∅). If it is a-consistent,
then by the saturation lemma it has a saturateda-consistent extension(Γ2, ∅) ∈W ∗. It
is easy to check that(Γ,Θ) ≤∗ (Γ, ∅)R∗(Γ2, ∅) anda 6∈ Γ2. This contradicts our as-
sumption, hence(Γ2, ∅) is nota-consistent. For someb1, . . . , bm ∈ Γ2, b1×. . .×bm ≤
a; by monotonicity of2 and the filter property,2a ∈ Γ .

Suppose3a ∈ Γ and(Γ,Θ) ≤∗ (Γ1, Θ1), i.e.Γ ⊆ Γ1. We want to show that there
exists(Γ2, Θ2) such thata ∈ Γ2 and(Γ1, Θ1)R∗(Γ2, Θ2). Consider the pair(Γ2

1 ∪
a,Θ1), which must be consistent. Otherwise we would have, for some2b1, . . . ,2bm ∈
Γ1, b1 × . . . × bm × a ≤ 3Θ1. Hence by monotonicity3(b1 × . . . × bm × a) ≤
33Θ1 and 3(b1 × . . . × bm × a) ≤ 3Θ1 (by 33a ≤ 3a). On the other hand,
2b1 × . . .× 2bm ×3a ≤ 3(2b1 × . . . × 2bm × a) by 2c× 3d ≤ 3(2c × d) and
3(2b1 × . . . × 2bm × a) ≤ 3(b1 × . . . × bm × a) by monotonicity of3, hence our
assumption implies that(Γ1, Θ1) is inconsistent:2b1 × . . .×2bm ×3a ≤ 3Θ1.



Since(Γ2
1 ∪ a,Θ1) is consistent, it has a saturated consistent extension(Γ2, Θ1)

such thata ∈ Γ2. It is easy to check that(Γ1, Θ1)R∗(Γ2, Θ1).
Suppose3a 6∈ Γ . Consider the theory(Γ, {a}) ∈ W ∗. It holds that(Γ,Θ) ≤∗

(Γ, {a}). Now let (Γ2, Θ2) ∈ W ∗ be any theory such that(Γ, {a})R∗(Γ2, Θ2). Then,
by definition ofR∗, a ∈ Θ2. But this impliesa 6∈ Γ2, for otherwise3a ∈ Γ2 by the
filter property anda ≤ 3a, which would contradict consistency of theory(Γ2, Θ2).
This proves that for all(Γ2, Θ2) with (Γ, {a})R∗(Γ2, Θ2), we havea 6∈ Γ2, as desired.

Theorem 5LetC be anyCS4-category. Then there is a canonical interpretation[[ ]] of
CS4 in C such that

– a formulaA is mapped to an object[[A]] of C;
– a natural deduction proofψ of B using formulaeA1, . . . , An as hypotheses is

mapped to a morphism[[ψ]] from [[A1]]× · · · × [[An]] to [[B]];
– each two natural deduction proofsψ andψ of B using formulaeA1, . . . , An as

hypotheses which are equal (modulo normalisation of proofs) are mapped to the
same morphism, in other words[[φ]] = [[ψ]].

Proof. We use an induction over the structure of natural deduction proofs.
We describe the modality rules, starting with the2I-rule. Consider a proofψ

Γ1··· φ1

2A1 · · ·

Γn··· φn
2An

[2A1 · · ·2An]
··· φ
B

2I
2B

By induction hypothesis, letf1, . . . , fn, f be the interpretation ofφ1, . . . , φn, φ respec-
tively. Then the interpretation ofψ is

(2f) ◦mA1,...,An ◦ (δA1 × · · · δAn) ◦ (f1 × · · · × fn)

wheremA1,...,An is inductively defined by

mA1,...,Am−1,Am = mA1×···×Am−1,Am ◦ (mA1,...,Am−1 × IdAm)

The2E -rule is modelled by the morphismε.
Dually, the3I-rule is modelled by the morphismηA. Last, we consider the3E-rule.

Consider a proofθ

Γ1··· φ1

2A1 · · ·

Γn··· φn
2An

Γ··· φ
3B

[2A1 · · ·2An B]
··· ψ

3C
3E

3C

By induction hypothesis, letf1, . . . , fn, f, g be the interpretation ofφ1, . . . , φn, φ, ψ
respectively. Then the interpretation ofθ is

µC ◦3g ◦ stA1,...,An,B ◦ (f1 × · · · × fn × f)



where the morphismstA1,...,An,B is inductively defined by

stA1,A2,...,An+1,B = IdA1 × stA2,...,An+1,B

We omit the routine verification that the desired equalities hold.

Theorem 6

(i) There exists aCS4-category such that all morphisms are interpretations of natu-
ral deduction proofs.

(ii) If the interpretation of two natural deduction proofs is equal in allCS4-categories,
then the two proofs are equal modulo proof-normalisation in natural deduction.

Proof. We show both statements by constructing aCS4-categoryC out of the natural
deduction proofs. We give here only the morphisms, and omit the verification that the
required equalities between proofs hold. We write a natural deduction proof

A
...
B

asA ` B. The objects of the category are formulae, and a morphism betweenA andB
is a proof ofB usingA as a hypothesis. The identity morphism is the basic axiomA `
A, and composition is given by cut. The bi-cartesian closed structure ofC follows in the
usual way from the conjunction, disjunction and implication in intuitionistic logic.

The 2-modality gives rise to a monoidal comonad. The natural transformations
δA: 2A −→ 22A andεA: 2A −→ A are given by the2I- and2E-rules applied to
the identity axioms2A ` 2A, respectively. The functor2 sends an objectA to2A and
a morphismf :A ` B to the morphism2f : 2A ` 2B. This is obtained by applying
the2I-rule to the composition off and2A ` A. Dually, the3-modality gives rise to
a monad onC. The strength is given by the proof obtained thus

[2A] [B]

[2A][B]
∧I

2A ∧B
3I

3(2A ∧B)
3E

3(2A ∧B)
→ I

2A ∧3B → 3(2A ∧B)

This categoryC shows now the claim: Assume an equation between proofs holds
in all CS4-categories. BecauseC is aCS4-category, it holds inC. But equality inC is
equality between natural deduction proofs, hence the two proofs are equal.


