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Abstract. We consider two systems of constructive modal logic which are com-
putationally motivated. Their modalities admit several computational interpreta-
tions and are used to capture intensional features such as notions of computation,
constraints, concurrency, etc. Both systems have so far been studied mainly from
type-theoretic and category-theoretic perspectives, but Kripke models for simi-
lar systems were studied independently. Here we bring these threads together and
prove duality results which show how to relate Kripke models to algebraic models
and these in turn to the appropriate categorical models for these logics.

1 Introduction

This paper is about relating traditional Kripke-style semantics for constructive modal
logics to their corresponding categorical semantics. Both forms of semantics have im-
portant applications within computer science. Our aim is to persuade traditional modal
logicians that categorical semantics is easy, fun and useful; just like Kripke semantics.
Additionally we show that categorical semantics generates interesting new constructive
modal logics, which differ somewhat from the traditional diet of intuitionistic modal
logics[WZ95].

The salient feature of the constructive modal logics considered in this paper is the
omission of the axiom¢& (AV B) — AV <$B and—< L, which are typically assumed
for possibility& not only in classical but also in intuitionistic settings. While in classical
(normal) modal logics these principles follow from the properties of neceSsihere
is no a priori reason to adopt them in an intuitionistic setting where the classical duality
betweerd and< breaks down ang is no longer derivable fror. In fact, a growing
body of work motivated by computer science applications [Wij90,FM97,PD01] rejects
these principles from a constructive point of view. In this paper we will study the se-
mantics of two such constructive modal logi€$4 andPLL, introduced below.

We explore three standard types of semantics, Kripke, categorical, and algebraic se-
mantics forCS4 andPLL. The algebraic semantic€$4-modal algebraPLL-modal
algebra) is concerned only with equivalence of and the relative strength of formulas in
terms of abstract semantic values (eg. truth values, proofs, constraints, etc...). It does not
explain why a formula is true or why one formula is stronger than another. If one is in-
terested in a more informative presentation and a concrete analysis of semantics, then a
Kripke or categorical semantics may be more useful. The former explains ‘meaning’ in



terms of worlds (in models) and validity of assertions at worlds (in models) in a classical
Tarski-style interpretation. The ‘semantic value’ is given by the set of worlds at which a
formula is valid. This form of semantics has been very successful for intuitionistic and
modal logics alike. More recent and less traditional is the categorical approach. Here,
we model not only the ‘semantic value’ of a formula, but also the ‘semantic value’ of
its derivations/proofs, usually in a given natural deduction calculus. Thus, derivations in
the logic are studied as entities in their own right, and have their own semantic objects
in the models. Many applications of modal logic to computer science rely on having a
term calculus for natural deduction proofs in the logic. Such a term calculus is a suitable
variant of theA-calculus, which is the prototypical functional programming language.
From this point of view the semantic value of a formula is given by the collection of
normal form programs that witness its assertion. Having a calculus of terms correspond-
ing to derivations in the logic one obtains a direct correspondence between properties
of proofs and properties of programs in the functional programming language based on
these terms. For a discussion of the necessity modal opératod its interpretation as

the ‘eval/quote’ operator in Lisp the reader is refered to [GL96].

In this sense both Kripke semantics and categorical semantics, presented here for
CS4 andPLL, should be seen as two complementary elaborations of the algebraic
semantics. They are both intensional refinements of their corresponding modal algebras,
and have important applications within computer science. The natural correspondence
between the Kripke models and modal algebras will be stated and proveStasa
Duality TheoremThis turns out to require a different approach compared to other more
standard intuitionistic modal logics, in particular as regardsitiraodality. The other
correspondence, between modal algebras and corresponding categorical structures, is
essentially that between natural deduction proofs and the appropstatieulus. This
is known as théextended Curry-Howard IsomorphisWhereas the extended Curry-
Howard isomorphism between intuitionistic propositional logic and the simply-tyxped
calculus has been known since the late 60s, establishing such isomorphisms for modal
logics is a more recent development. In this paper we develop a suitable categorical
semantics and associatedalculus forCS4 andPLL. It should be mentioned that the
results forPLL are not new (see [FM97] for the Kripke and [BBdP98] for categorical
semantics foPLL). Our contribution here is to show hdwLL is related toCS4 and
how these known results f6tLL can be derived from those fro@S4, or, to put it the
other way round, how the known constructionsfl. may be generalised ©S4.

2 The Constructive Modal SystemsCS4 and PLL

In this paper we take a fresh look at two prominent constructive modal extensions to
intuitionistic propositional logic IPL), which are particularly interesting because of
their various applications in computer science.

To give the reader a taste for these applications, we list a few. Davies and Pfenning
[DP96] use thed-modality to give ai-calculus for computation in stages. The idea
is that a ternJ¢ represents a delayed computation. Ghani et al. [GdPR98] investigate
refinements of this calculus which are suitable for the design of abstract machines.
Similar ideas relatin@l with staged evaluation and the distinction between run-time and



compile-time semantics have been developed by Moggi et.al. [ BMTS99]. Despeyroux
and Pfenning [DPS97] use a box modality to encode higher-order abstract syntax in
theorem-provers like Elf and Isabelle. Still another use of@hmodality, to model
the quot e mechanism of Lisp, is proposed by Goubault-Larrecq [GLI6F Atyle
modality has been extensively used to distinguish a computation from its result in the
A-calculus: Moggi's [Mog91] influential work on computational monads describes the
computationah-calculus, which corresponds to an intuitionistic modal type theory with
a ¢-like modality (see [BBdP98]). Fairtlough and Mendler [Men93,FMW97,Men00]
use the same modality, which they call in their work on lax logic for constraints and
hardware verification. The calculus has also been used for denotational semantics of
exception handling mechanisms, continuations, etc. On the syntactic side, it has been
used, in the monadic-style of functional programming to add a notion of ‘encapsulated
state’ to functional languages.

Despite their relevance for computer science these modal extensitifls séem
to be less well investigated as modal logics in their own right, perhaps because of the
“unusual properties” of their associated modal operators.

2.1 Constructive S4

The first modal system, which we call Constructive £&4), is a version of the intu-
itionistic S4 first introduced by Prawitz in his 1965 monograph [Pra65]. The Hilbert-
style formulation ofCS4 is obtained by extendinkPL by a paird, & of S4-like intu-
itionistic modalities satisfying the axioms and the necessitation rule listed in Figure 1.
The normal basis oS4, i.e., consisting only of axiom&8 K and<¢ K plus the axiom
-1 (which we reject, see below) has been introddcaaid motivated by Wijesek-

era [Wij90] as a predecessor to constructive concurrent dynamic logic. The practical
importance ofCS4 as a type system for functional programming is evident from the
literature, e.g. as cited in the beginning of this section, though most applications so far
focus on thead modality. The formal role of> and its interaction withd has recently
been studied systematically by Pfenning and Davies [PDO01].

0K :0(A— B) — (0DA — OB) OK :0(A— B) — (©A— ©B)
o7 :0A4A — A ST : A— CA

04 :0A4 — 0O0OA 4 1 OCA — A

Nec : If Ais atheorem thefl A is atheorem.

Fig. 1. Hilbert-style system for Constructive S4

The natural deduction formulation 6854 is subject to some controversy. We recall
itin the style of Bierman and de Paiva [BdP96]. The naive introduction rule {aorre-
sponding to the necessitation rulec) insists that all of the undischarged assumptions
at the time of application are modal, i.e. they are all of the fars;. However, the

! Wijesekera considers a first order system, to be precise.



fundamental feature of natural deduction is that itlssed under substitutioand this
naive rule will not be closed under substitution, i.e. substituting a correct derivation in
another correct derivation will yield an incorrect one (if this substitution introduces non-
modal assumptions). We conclude that must be formulated as in Figure 2, where the
substitutions are given explicitly. The same sort of problem arises in the rul&scfor
and the same solution (of explicit substitutions) can be used, see thegihd-igure 2.

Both problems were first observed by Prawitz, who proposed a syntactically more
complicated way of solving it [Pra65]. An interesting alternative approach has recently
been presented by Pfenning and Davies [PD01], which (essentially) involves two kinds
of variables, and two kinds of substitution. Note that in our solution the discharging
brackets are used in a slightly different way from traditional natural deduction. In the
introduction rule ford they mean, dischargdl assumptions (which must be all boxed
in this rule).

[OA; ---OA, B

: o : (©g)
— dA; ... 04, OB oC
oC

Fig. 2. Natural Deduction rules for Constructive S4

The systenCS4 is the weakest among the variants of intuitionistic S4 discussed in
the literature. In particular, it does not prove the distribution of the possibility operator
over disjunction®(A v B) — ©A Vv OB, nor does it assume< L, i.e, that possi-
bly falsum L) and falsum () are equiprovable (which is the nullary form of the
distribution). This version of non-classical S4 without distributivityXebverV is ex-
tremely well-behaved. As we will see there is a complete version of the Curry-Howard
Isomorphism for it.

2.2 Propositional Lax Logic

The second constructive modal logic we consider is an extensilbtLdhat features a
single modality$ satisfying the axioms

OT : A — CA
Q4 OCOA — CA
OF:(A— B)— <A — OB.



The third axiom is known (categorically) as ‘functorial strength’. This system is dis-
cussed under different names and in slightly differing but equivalent axiomatic pre-
sentations, such &omputational Logi¢BBdP98] orPropositional Lax LogiqdPLL)
[FM97]. Henceforth we shall call iPLL. The natural deduction system contains the
following rules for$ ([Men93)):

i(OI) <>EA <>:B (Ce)

B oB

PLL also has a colourful history. As a modal logic it was invented in the forties by
Curry [Cur57] (who seems to have dropped it again because of its wild properties) and
independently rediscovered in the nineties by Benton et al. and Fairtliough and Mendler,
who used the symbaD for the modality, as the Curry-Howard isomorphic version of
Moggi's computational lambda-calculus. As an algebra the syBtelmis well known
in abstract topology. The operator arises naturally as a (strong, or multiplicative)
closure operator on the lattice of open sets, or more generally as a so-called nucleus
in the theory of topoi and sheafification [Joh82]. From this topological perspective,
Goldblatt studied a system identicalRbL accommodating Lawvere’s suggestion that
the O modality means “it is locally the case that” by interpreting this in various ways to
mean “at all nearby points” [Gol81,Gol93]. The algebraic properties of such operators
(on complete Heyting algebras) have been explored by Macnab [Mac81], who calls
them “modal operators”.

In this paper we show hoWLL can be naturally seen as a sped&4 theory
or CS4 algebra in the sense that it can be obtained f@8%4 by adding the axiom
A — OA. These results identifyp as a constructive modality of possibility and provide
a satisfactory explanation for why PLL a modalityd is missing: it is implicitly built
into the semantics already.

3 Kripke models

Ouir first step is to develop a suitable Kripke model theoryd8&4. While it is easy to
agree that a Kripke model of constructive modal logic should consist of a set of worlds
W and two accessibility relations, one intuitionistiand the other modaR, it is not so

clear how these relations should interact (frame conditions) and just how they should be
used to interpret specifically the modality. The mainstream approach as exemplified
by Ewald [Ewa86], Fischer-Servi[FS80], Plotkin and Stirling [PS86], Simpson [Sim94]

is based on the analogy af with V and of & with 3-quantification over the modal
accessibilityR. Reading these quantifiers intuitionistically, relativetpone arrives at

the semantic interpretation = OA iff Yv. w < v = Yu. v R u = u = A for
necessity, and

wECAIM JuwRu & uE A (1)



for possibility. Indeed, as the shown in the literature, this gives a fruitful basis for intu-
itionistic modal logics. Unfortunately, it is not suitable 1664, since it forces the ax-
iom&(AV B) — (CAV<OB) to hold, which we want to avoid. It also requires an extra
frame condition to ensure hereditariness of truth, thatw = ¢ A andw < v implies

v = OA. Hereditariness, however, can also be achieved simply-yantifying over

all <-successors in the interpretation®f

wECAIff YVu.w<u=Fv.uRv & v A 2

Not only does this away with the extra frame condition to fobckeereditary alongg, it

also eliminates the unwanted axighiAv B) — (CAV<B). Infact, as it turns out this
works forCS4. This interpretation (2) o, as far as we are aware, has been introduced
by Wijesekera [Wij90] to capture non-deterministic computations and independently in
[FM97] as an adequate Kripke interpretation of truth “up to constraints”. In both cases
the absence of the axioms(A vV B) — (CA Vv ©B) is a natural consequence of the
semantics.

Wijesekera only considered the normal bask, © K of CS4, yet included the
axiom —~< L. To eliminate the axiom~<& L we follow [FM97] in permitting explicit
fallible worlds in our models. What remains, then, is to find suitable frame conditions
on < and R that are characterised by ti@54 axiomsOT, 04, OT, &4, These are
incorporated into the following notion @&S4 model:

Definition 1. A Kripke model ofCS4 is a structureM = (W, <, R, |=), whereW is

a non-empty sek and R are reflexive and transitive binary relations &%, and= a

relation between elements € W and propositionsA, writtenw = A (* A satisfied at
w in M™) such that:

— < is hereditary with respect to propositional variables, that is, for every variagble
and worldsw, v/, if w < w’ andw = p, thenw' |= p.
— Rand< are related as follows: ifv Rw’ andw’ < v then there exists’ such that
w < v" andv’ Ro. In other words:(R ; <) C (<; R).
— The relation= has the following properties:
wET;
wEAANB iff wiE Aandw = B;
wEAVB Iff wiE Aorw = B;
wEA—-BIiff V. w<uw = (W EA=w = B)
wEOA iff V' w<w =VYu. wRu=ukEA
wECA iff V' w<w = Ju.wRuhulE A
Notice that we do not have the clausel~= L, i.e., we allow inconsistent worlds.
Instead, we have
— ifwpE Landw < o', thenw’ = L, and
— ifw | L, then for every propositional variabje w |= p (to make sure that — A
is still valid).

As usual, a formula is truein a modelM = (W, <, R, =) if for everyw € W,
w = A. We sometimes writd/, w = A when we want to make the model explicit. A
formula A is valid (= A) if it is true in all models; a formula is satisfiable if there is a



model and &onsistentvorld where it is satisfied. A formuld is alogical consequence
of a set of formulad” if for every M, w if M,w = I', thenM,w = A.

Observe that under the translation of intuitionistic logic into classical S4 which
introduces a modalityd; corresponding to the intuitionistic accessibility relatigin
our modalitiesd and< are translated as;0,, andO; <, respectively (wherel,
and <), are modalities corresponding #). This means that our variant of S4 does
not fall directly in the scope of Wolter and Zakharyaschev's analysis of intuitionistic
modal logics as classical bimodal logics in [WZ97] since they asstrtebe a normal
modality. However, analogous techniques could probably be used to give a new proof
of decidability and finite modal property 6fS4 andPLL.

Theorem 1. CS4 is sound and strongly complete with respect to the class of models
defined above, that is, for every set of formulaend formulaA, we havel" tcs4
Ae T EA

We can use Theorem 1 to give a new soundness and completeness thed?em for
This is based on the observation tRatlL. models are a sub-class 654 models:

Definition 2. A Kripke model forPLL is a Kripke model folCS4 whereR is heredi-
tary, that is, for every formula, if w = A andwRuv, thenv |= A.

The latter requirement corresponds to the strength axiom. It is in fact equivalent to
the axiomA — OA, so thatd becomes redundant in Kripke models RitL. An alter-
native (slightly stronger) definition to the same effect given by Fairtlough and Mendler
requires thaf? is a subset oK.

Theorem 2. PLL is sound and strongly complete with respect to the class of models
defined above.

Proof. Soundness d?LL follows from soundness @2S4 and the fact thaPLL-models
satisfy the axiom schemé& — OA, which renders the strengthF' axiom derivable
from G K of CS4.

For completeness consider an arbitrarySetf PLL-formulas, and &LL-formula
B such thatl” t/p. B. Then, it is not difficult to see that™* t/cs4 B wherel™
is the theoryl” extended by all instances of the scherhe— OA. For otherwise, if
I'* Fcsa B, we could transform this derivation into a derivatibn-p_ . B simply by
dropping all occurrences af in any formula, which means that every use df84-
axiom becomes an application oPaL-axiom, and any use of an axiorh — OA or
rule Nec becomes trivial. Note, this holds since if we drop@iin aCS4 axiom, we get
aPLL-axiom. By strong completeness ©54 we conclude there exists@S4-model
M such thatM = I'™* but M (= B. Butthen not onlyM = I but alsoM validates alll
instances oA — OA, which means that/ is aPLL-model.

4 Modal Algebras and Duality

There is no unique ‘right’ Kripke semantics for a given system of modal logic. In gen-
eral, the fit between modal (intuitionistic or classical) logics and Kripke structures is



not perfect: apart from several versions of Kripke semantics for the same logic, which
already seems suspect to category theorists, there are logics which are not complete for
any Kripke semantics ([Fin74,Tho74Modal algebrashave the definite advantage of
fitting the logics much better.

One can think of an algebra as a collection of syntactic objects, e.g. formulae of a
logic. Representation theorems for algebras show how given an algebra one can build
a ‘representation’ for it - a structure which is a ‘concrete’ set-theoretic object, e.g. a
Kripke modef.

We define modal algebras correspondin@td. andCS4 below and show how to
construct representations for them. Since the modal algebras can be directly obtained
from the respective categorical models, and modal algebras can be shown (see below)
to be Stone-dually related to our Kripke models, we obtain an algebraic link (albeit
a weak one) between Kripke models and categorical models for the two constructive
modal systems considered.

Recall that dHeyting algebraH is a structure of the fornA, <, x, +, =, 0) where
Ais a set of objects (one example would be formulaédy a partial order (for formulae,

a < b means ‘a implies b")x is a product (which corresponds toin intuitionistic
logic), + a sum (corresponds t@), = pseudocomplement (corresponds-t9 and0
the least elementl().

We introduce two additional operators, corresponding to the modalities. Note that
O distributes overx, but & does not distribute over.

Definition 3. A CS4-modal algebrad = (4, <, x,+,=-,0,0, ©) consists of a Heyt-
ing algebra({A, <, x, +,=-,0) with two unary operator§l and< on A, such that for
everya,b € A,

O(a x b) =0a x Ob Oa <a a < <a
Ca < O(a+b) Oa < O0Oa OCa < Ca
1<0O1 Oa x ©b < <(Oa x b).

Next, we identify the corresponding algebraic structuréPfol, which are also known,
in a somewhat different axiomatisation, as “local algebras” [Gol76]:

Definition 4. A PLL-modal algebrad = (4, <, x,+,=-,0, <) consists of a Heyting
algebra(A, <, x, +,=-,0) with a unary operatos> on A, such that for every, b € A,

Ca<Ola+d) a<Ca OGCa<Oa axOb<Oaxb).

Obviously, every Kripke modelM for CS4 or PLL gives rise to a corresponding
modal algebrd/ " (take the set of all definable sets of possible worlds).

Conversely, every modal algebra gives rise to a so-cgkagtral frameA general
frame is a structure which consists of a set of possible wad#ldswo accessibility re-
lations and a collectiohV of subsets of¥ which can serve as denotations of formulae
Intuitively, YW should containfw:w = p} for every propositional variablg and be
closed under intersection, union and operations which give the set of worlds satisfying
Oy (Op) from the set of worlds satisfying. (For more background, see for example
[Ben83].)

2 More precisely, a general frame; see the discussion below.



Here, we will be somewhat sloppy and identify elements of the algebra with logical
formulae straightaway. We assume that some subs#tA is arbitrarily designated as
a set of propositional variables;, +, = and0 are interpreted as, v, — and_ L. Then
we can formulate the representation theorem for models instead of general frames:

Theorem 3 (Representation forCS4). Let A be a CS4-modal algebra. Then the
Stone representation of, SR(A) = (W*, R*, <*, =*) is a Kripke model folICS4,
where

1. W* is the set of all pairgI,©) whereI" C A is a prime filter, and® C A

an arbitrary set of elements such that for all finite, nonempty, choices of elements
Cly 'y Cn €60, 0(c1 4+ +cpn) €T

(r,e)<*(r,e)if rcr.

(ILO)RX (I, @) iff Va.Oa eI’ = a€I"andO C @'

Forallae A, (I,0) E*a iff a€ I

rown

Letus call pairg I, ©) with I, © C A consistent theoriei§for any, possibly empty,
choice of elements,, . . ., b,,, in I" and any non-empty choice of elements. . . , ¢, €
O,b1 X ... X by £ Oe1 + -+ + ¢p). Then, the worlds ofSR(.A) are simply the
consistent theoried", ©) wherel is a prime filter. In the completeness proof we also
need a slightly stronger notion of consistency as follows:der A, a theory(I", ©)
is a-consistentf for any choice of elements,, ..., b,, in I andcy,...,c, € 6, by X
co o X by £ (a+O(e1 + -+ + ¢p)). This includes the degenerate case 0 where we
simply requireb; x ... X b, £ a.

The proof of our Stone Representation Theorem 3 relies on the following lemma.

Lemma 1l (Saturation Lemma).Leta € A and (I, ©) an a-consistent theory in the
CS4-algebraA. Then(I', ©) has a saturated-consistent extensidid ™, ©), such that
I'* is a prime filter andl” C I'™*.

We can now extract without extra effort a Stone RepresentatioBlfbralgebras from
that forCS4 algebras, identical to the one implicit in the completeness proof given in
Fairtlough and Mendler [FM97].

Theorem 4 (RepresentationfofPLL). Let.4 be aPLL-modal algebra. Then the Stone
representation ofd, SR(A) = (W*, R*, <* =*) is a Kripke model folPLL, where
W*, <*, |=* are as above an@l", ©O)R*(I",0") iff ' C " and® C ©'.

Proof. Observe that everyLL algebraA is at the same time @S4 algebrad’ where
the operatofd is taken to be the identity function. Hence, we can construct 84
Stone representatiofiR(A’) as in Theorem 3, which is @S4 algebra. Now, what
properties does the relatidti* have inSR(A’)? Well, (I'1,01) R* (I3, 02) iff

Va. Oa € I = a € Iy and®; C O,. But sinced is the identity operator, this is the
same ad; C Iy and®; C O, as defined in Theorem 4. Observe further tRatis a
subrelation of<*, which means thaR* is hereditary. ThusSR(A’) is aPLL model.

Section 6 introduces categorical models @84 andPLL. Observe that one can
view categorical models as modal algebras where the partial order refaisaeplaced
by a collection of morphisms. Intuitively, (again thinking of objects as formulae) while
a < bin an algebra means thatis implied bya, the category has possibly several
morphisms fronu to b labelled by encodings of corresponding derivations fobm a.



5 Discussion on Kripke Semantics

Since our Kripke semantics f@S4 is new it deserves some further justification and
discussion, which we give in this section.

First, how do our models relate to Wijesekera’s? Let us call the class of structures
M = (W, <, R, =) with < reflexive and transitive but arbitray CK-models(i.e.,
drop the requirement thak is reflexive and transitive as well as the frame condition
R;< C <;R), and further those in which for all worlds [~ L infallible CK models.
Then, Wijesekera [Wij90] showédhat the theoryPL + OK + O K + =< L with the
rules of Modus Ponens andlec is sound and complete for the class of infallili3&
models. The proof of Wijesekera can be modified to show@kat= IPL + OK + K
is sound and complete for &K models. OurCS4-models may then be seen as the
special class o€K models characterised by the additional axioti§ 07", &4, D4,

Following [FM97] we permittedallible worldsto render the formula< L invalid.
This makesCS4 different from traditional intuitionistic modal logics which invari-
ably accept this axiom. Fallible worlds were used originally to provide an intuitionis-
tic meta-theory for intuitionistic logie.g,[TvD88,Dum77]. For intuitionistic proposi-
tional logics, with a classical meta-theory, fallible worlds are redundant. However, this
is no longer true for modal logics. There, the presence or absence of fallible worlds
is reflected in the absence or presence of the theerém. In particular note that
in the standard classical setting, i.e., without fallible worlds an¢= <A meaning
. w Rov & v | A, the axiom—-<CL (as well asC(AV B) — CAV OB)is
automatically validated.

It is not only the fallible worlds but also the extension by sefsapturing heredi-
tary refutation information, that distinguishes the representation of constructive modal
logic, such asCS4, from that for standard intuitionistic modal logics, such as those
of [PS86,FS80,Ewa86]. Indeed, if the axiom& L and< (¢ V @) — Op Vv O are
adopted the set® and fallible worlds become redundant. Without these axioms, how-
ever, we also need the “negative” informatiord@rto characterise truth at a world fully.
It is also worthwhile to note that the model representation of Thm. 88 is simpler
than the one given by Wijesekera [Wij90] in the completeness proaffor- < L.
There, theo are (essentially3ets of setsf propositions, in which every elementé
is asetof all possible future worlds fofI", ©) that are accessible throudti. This too,
expresses negative information, though of a second-order nature. A quite different, but
still second-order representation©K models has been proposed by Hilken [Hil96].
As we have shown, however, the representationd84 can be done in a first-order
fashion.

Our constructive S4 models satisfy the inclusiBi< C <;R, a frame condition
that is typically assumed in standard intuitionistic modal logic already for syfem
One may wonder about the conversgk C R;< of this inclusion. One can show thatin
our models it generates the independent axiom schiémé — CB)AO(AVODB)) —
< B, thus inducing a proper extension@84.

8 Actually, Wijesekera also lists the axiomA A G(A — B) — <B, but this is derivable
already.



As pointed out before, traditional intuitionistic modal logics such as those consid-
ered by Fischer-Servi [FS80] or Plotkin and Stirling [PS86] adopt a fundamentally dif-
ferent interpretation o, definingw = ¢Aiff Jv. w Rv & v | A. This enforces
validity of &(A Vv B) — (¢ AV ©B) but requires a frame condition—; R C R;<!
(confluence oK and R) to make< hereditary along<. It is not surprising, then, that
for our constructive modal models, where hereditariness is built in by the semantic in-
terpretation, this frame condition obtains the axiom schérfiv B) — (CAV ¢B),
again inducing a proper extension.

We leave it as an open question if the above-mentioned ax{md4 — <B) A
O(AVOB)) — OBor&(AVB) — (©AVOB) are complete for the frame conditions
<;:R C R;<or<—1:R C R;<™!, respectively. At least foPLL [FM97] it is known
that<—!;R C R;<~!is completely captured by the axiot( AV B) — (CAV OB),
and in [Wij90] this axiom is linked with sequentiality @f.

6 Categorical models

Categorical models distinguish between different proofs of the same formula. A cat-
egory consists of objects, which model the propositional variables, and for every two
objectsA and B each morphism in the category framto B, corresponds to a proof of

B using A as hypothesis.

Cartesian closed categori€w/ith coproducts) are the categorical models for intu-
itionistic propositional logic. For a proper explanation the reader should consult Lam-
bek and Scott [LS85]; Here we just outline the intuitions. Conjunction is modelled by
cartesian products, a suitable generalisation of the products in Heyting algebras. The
usual logical relationship between conjunction and implication

AANB — Cifandonlyif A — (B — C)

is modelled by an adjunction and this defines categorically the implication connective.
Thus we require that for any two objedisandC there is an objecB — C such that

there is a bijection between morphisms frohn B to C and morphisms fron to

B — (. Disjunctions are modelled by coproducts, again a suitable generalisation of
the sums of Heyting algebras. True and false are modelled by the empty product (called
a terminal object) and co-product (the initial object), respectively. Finally negation, as
traditional in constructive logic, is modelled as implication into falsum. A cartesian
closed category (with coproducts) is sometimes shortened to a ccc (respectively a bi-
cce). Set, the category where the objects are sets and morphisms between sets are
functions, is the standard example of a bi-cartesian closed category.

To present a categorical model of constructive S4 we must add to a bi-ccc the struc-
ture needed to model the modalities. In previous work [BdP96] it was shown that to
model the S4 necessity operator one needsraonoidal comonadSuch a monoidal
comonad consists of an endofunctarC — C together with natural transformations
64:0A — O0Aandey: 0A — Aandmy p:0Ax OB — O(A x B) and a map
my:1 — 01, satisfying some commuting conditions. These natural transformations
model the axiomd andT together with the necessitation rule and Kexiom.



Here we assume that the modal operatois dually modelled by anonadwith
certain special characteristics: namely we want our monad strbegwith respect to
theO operator, i.e. we assume a natural transformatianz: 0A x OB — O(0A x
B) satisfying the conditions detailed in [Kob97]. The strength is needed to model the
explicit substitution in thed¢-rule.

Definition 5. A CS4-category consists of a cartesian closed categbyith coprod-
ucts, a monoidal comona(d, é,e,m_ _,m;) whereO:C — C and a O-strong
monad(<, p, ) where®: C — C.

The soundness theorem shows in detail how the categorical semantics models the
modal logic.

Theorem 5 (Soundness).etC be anyCS4-category. Then there is a canonical inter-
pretation[_] of CS4 in C such that

— aformulaA is mapped to an objedtd] of C;

— a natural deduction prooi) of B using formulaeA,,..., A, as hypotheses is
mapped to a morphisthy] from[A;] x - -+ x [4,] to [B];
— each two natural deduction proofs and ) of B using formulaeA,, ..., A, as

hypotheses which are equal (modulo normalisation of proofs) are mapped to the
same morphism, in other wordg] = [¢].

A trivial degenerate example of &64-category consists of taking any bi-ccc, say
Set for example and considering the identity functor (both as a monoidal comonad and
as monad) on it. Less trivial, but still degenerate models are Heyting algebras (the poset
version of a bi-ccc) together with a closure and a co-closure operator. Non-degenerate
models (but quite complicated ones) can be found in [GL96]. To prove categorical com-
pleteness we use a term model construction.

Theorem 6 (Completeness).

(i) There exists &S4-category such that all morphisms are interpretations of natu-
ral deduction proofs.

(i) Ifthe interpretation of two natural deduction proofs is equal in@$4-categories,
then the two proofs are equal modulo proof-normalisation in natural deduction.

A categorical model oPLL consists of a cartesian closed category with a strong
monad. These models were in fact the original semantics for Moggi’s computational
lambda-calculus an®LL can be seen as reverse engineering from that [BBdP98].
Hence we refrain from stating categorical soundness and completeness for this system,
but of course they hold as expected [Kob97].

Inthe logic,PLL arises as a special case@$4 when we assume the derivability of
A — DOA. A similar statement holds in category theory. We have an inclusion functor
from the category oPLL-categories into the category GfS4-categories: eacRLL-
category is aCS4-category where the co-monad is the identity functor. Conversely,
eachCS4-category such thai A is isomorphic tod is aCS4-category.



7 Conclusions

This paper shows how traditional Kripke semantics for two systems of intuitionistic
modal logic,CS4 and PLL, can be related via duality theory to the categorical se-
mantics of (natural deduction) proofs for these logics. The associated notions of modal
algebras serve as an intermediate reference point. From this point of view the results
of this paper may be seen as presenting two kinds of representations for these modal
algebras.

The first representation explains the semantics of an element in the algebra in terms
of sets of worlds and truth within Kripke models. To this end we have developed an
appropriate class of Kripke models {664 and proved a Stone representation theorem
for it. As far as we are aware the model representatio@f4 is new. Its essential first-
order character contrasts with the second order representations for the weaker system
CK given by Wijesekera and Hilken. We have also shown how the canonical model
construction of [FM97] folPLL follows from that forCS4 as a special case. Goldblatt
[Gol76] proved a standard representation theoremPfio algebras in terms of7 -
frames, that only requires prime filters rather than péifs9). However, Goldblatt’s
work explainsO as a constructive modality oecessitywhich is an altogether different
way to look atO.

The contribution of this paper regardifd.L lies in showing that the modalit®
of PLL is a constructive modality gbossibility, in the sense that it can be obtained
by adding toCS4 the axiomA — DOA. This is not the only way to deriveLL from
CS4, but probably the most simple one so far proposed. Pfenning and Davies [PDO01]
give a full and faithful syntactic embeddif}.L — CS4 that read$©A as<¢OA and
A — B asOA — B. Both possibilities can be used to generate different semantics for
PLL from that ofCS4. The embedding discussed in this paper most closely reflects the
notion of constraint models fd?LL introduced in [FM97].

The second representation given in this paper explains the semantics of an element
in the algebra in terms of provability in a natural deduction calculus. The representation
theorem establishes)acalculus and Curry-Howard correspondenceG@&4. In gen-
eral, modal algebras can be extended to categorical models by adding information about
proofs (replacing< of the algebra by the collection of morphisms of the category), but
this process is not trivial.

This extra information about proofs is crucial in applications of logic to model com-
putational phenomena. While terms (encodings of proofs in intuitionistic proposi-
tional logic) can be seen as semantic counterparts of functional programs, addition of
modalities to intuitionistic propositional logic makes it possible to obtain more sophisti-
cated semantics of programs reflecting such computational phenomena as, for example,
non-termination, non-determinism, side effects, etc. [Mog91]. Information about proofs
can also be necessary in other applications of logic to computer science, where not just
the truth (or falsity) of a formula is important, but also the justification (proof) of the
claimed truth (see e.g. [Men93,FMW97,Men00]). One example we are considering is
the verification of protocols.

The results in this paper partially depend on having a natural deduction presentation
of the logic following the standard Prawitz/Dummett pattern of logical connectives de-
scribed by introduction and elimination rules. This is true@&4 and forPLL, but not



for weaker logics, for example for a modal logic whéresatisfies only thé{-axiom.
Thus, our main challenge is to extend this work on categorical semantics to other modal
logics.

Next we would like to apply our techniques to constructive temporal logics. Another
direction we would like to pursue is providing concrete mathematical modeGSdr
Some such applications might be generated as generalisation of our previous work on
constraint verification ilPLL. Meanwhile we shall continue our work on applications
of constructive modal logics to programming.
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Appendix

The full proofs of the main theorems are collected in this appendix.

Theorem 1 CS4 is sound and complete with respect to the class of models defined
above, that is, for every set of formuldgand formulad, I Fcss A & I' | A.

Proof. The soundness proof goes by induction on the length of a derivatidnfiam

I". We show that all axioms are valid and inference rules preserve validity. The intuition-
istic part is not problematic. As for the modal axioragl and<$ K are valid just due

to truth definitions and transitivity of. &7 andO7T are valid because is reflexive.



<4 andD4 are valid because of transitivity éf. The latter also depends on transitivity

of <;R, which follows from the frame conditio®;< C <;R and the fact that both

R and< are transitive. In these proofs we also need thdg hereditary, reflexive and
transitive. The necessitation ruléec follows from the fact that if a formula is true in

all models then it must be satisfied at all worlds in all models since every world induces
a model. Completeness follows from the Stone Representation Theorem 3.

Lemma 1 [Saturation Lemma] Let a be element of the algebra, arid’, ©) an a-
consistent theory. Thefi", ©) has a saturated:-consistent extensiof *, @), such
that I"™* is a prime filter andl” C ™.

In the proof of the Saturation Lemma and the following proof of the Stone Rep-
resentation Theorem we abbreviate consistency of a thgar®) asI” £ <O, and
a-consistencyy I' £ a + ©@, remembering that only in the second case we permit
the choice from® to be empty, in which case the disjure®© disappears rather than
being taken as .

Proof. We obtain(I™*, @) in the usual way by enumerating all elements of the algebra
(therefore, we assume that this is possible)

COsCLy+ 5 Cny Crdly - -

with infinite repetitionof every element, and by building up a hierarchy:afonsistent
theories

(-F()a(—)) g (Fla(—)) g g (Fna(—)) g (Fn+17(—)) g

starting withIy =4 I" and such thaf, 11 =4 (I, U{c, } if the theory(I},U{c,},O)
is a-consistent, otherwisg,, 1 =qf I,. Then, putl™ =4 UnEw I,,.

e First observe that-consistency of I'*, ©) follows from a-consistency of each
pair (I, 0).

e We show thatl™* is upward closed. To this end suppdse " andb < c. For
somen, b € I,. Since our enumeration is with infinite repetition= ¢,, for some
m > n. Then, we claim that,,, € I;,,+1. For otherwise(I,, U {c,, }, ©) would have
to bea-inconsistent, oI, U {¢;n}) < a + ¢6. But sincel;, C I, we also have
b € I, andb < ¢, which would implyl,, < a + <©6, contradictingz-consistency of
(I, ©). Hencege = ¢y, € I'41 C I'™* as desired.

e It remains to be seen that* is prime, i.e. ifc + ¢ € I'* thenc e I'* orc € I'*.
Suppose + ¢’ € I'*,i.e.c+ ¢ € I, for somen. Again, we can find indices: > n
andm’ > n such thate = ¢, andcd’ = ¢),,. Let k be the maximum of both. We
claim thatc,,, € I'yy1 Ofr ¢y € I'ky1. Suppose otherwise, i.e. bothy, U {c,,},©)
and (I'; U {c., ©) area-inconsistent. Thus(} U {c;n}) < a + ©O' and (I U
{em}) < a+ <062, wherel} andO' are some subsets of propositions frénando,
respectively. Lef? = I'UI'? and@?® = ©1U62. Then, we can derivll P U{c,, }) <
a+<003 and(IPU{cn } < a+<63 Fromthis, we getlP U{cy, +cm }) < a+<063
But sincec,, + ¢y = ¢+ ¢ € I, C I by assumption, finally, < a + <O in
contradiction toa-consistency of I, ©). This proves our claim that,, € I+, or
Cm € Ipr1, hencec € I' orc’ € I'*.



Theorem 3 [Representation forCS4] Let.4 be aCS4-modal algebra. Then the Stone
representation ofd, SR(A) = (W*, R*, <*, =*) is a Kripke model foCS4, where

1. W* is the set of all pairs(I,©) whereI" C A is a prime filter, and® C A
an arbitrary set of elements such that for all finite, nonempty, choices of elements
ClyeosCn €60,0(c1 4+ -4cn) €T

2. (o)< (Ir,e)Hiffrcr’

3. (IO)R*(I",0")iffVa.Oa € I'=a € ["and® C O'.

4. Poralla € A, (I,0) =*aiffa eI

Proof. ConsiderSR(A) as defined in the theorem. We must show that it satisfies the
definition of a Kripke model for constructive S4.
It is easy to see thak is reflexive and transitive (inequalities corresponding to the
axioms T and 4 take care of that). Obvioustyis reflexive, transitive and hereditary.
Finally, to verify the inclusion oR*; <* in <*; R* let the accessibilities

(Fla @1)R*(F2) @2) S* (F?n @3)
in W* be given. Consider the p&ify, #) € W*. We are going to show that
(Fla @1) S* (F17 (Z))R*(F?n @3)

Trivially, (I'y,©1) <* (I',0). Moreover, by definition olR* and<*, I'f’ C I, C I3,
whereI'" is {a:0a € I'}. This proves(I,0)R*(Is,03), whenceR*; <*C<*; R*
overall.

Now we need to show thdt", ©) * a satisfies the properties of a constructive
modal validity relation.

If a is of the formb x c or b + ¢, the proof is easy (for disjunction, we use the fact
thatI" is a prime filter). Ifa is of the formb = ¢, the proof uses the fact th&tR(.A)
contains pairg/’, ©) for all prime filtersI".

Supposéla € I', (I,0) <* (I,01) and ([, 01)R* (I, ©2). We want to show
thata € I. Since(I,0) <* ([1,01), Oa € I1. Since(l1,01)R*([2,602),a € I
as desired.

Supposev(I1,01)((I,0) <* (I1,601) = V(I2,0)((I1,601)R*([2,02) =
a € I;)). We want to showda € I'. Consider the theoryl™®, 0). If it is a-consistent,
then by the saturation lemma it has a saturatednsistent extensiofi, #) € W*. It
is easy to check thdtl, ©) <* (I',0)R*(I%,0) anda ¢ I5. This contradicts our as-
sumption, hencél'", §) is nota-consistent. For song, ..., b,, € I'", by x...xb,, <
a; by monotonicity ofd and the filter propertylla € I

Supposeda € I'and(I,0) <* (I1,64),i.e.I' C I'y. We want to show that there
exists(Iz, ©,) such thate € I and(I'1,01)R* (I, ©2). Consider the paif/}” U
a, ©1), which must be consistent. Otherwise we would have, for sGie. . ., 0b,, €
I, by X ... X by, x a < ©O1. Hence by monotonicityd(b; X ... X by, X a) <
OG0B and (b X ... X by, X a) < 061 (by OCa < <a). On the other hand,
Oby X ... X Oby, X Ca < O(Oby X ... x Oby, X a) by Oc x &d < &(Oc¢ x d) and
S(Oby X ..o x Oby, x a) < O(by X ... X by, X a) by monotonicity of&, hence our
assumption implies thdf, ©1) is inconsistenttdb, x ... x Ob,, x Ca < OO,



Since (I’ U a,©y) is consistent, it has a saturated consistent extendioro, )
such that: € I. Itis easy to check thdt'y, ©1)R* (1%, ©4).

SupposeCa ¢ I'. Consider the theoryl’,{a}) € W*. It holds that(I,©) <*
(I, {a}). Now let(I,02) € W* be any theory such thaf", {a})R* (I, O2). Then,
by definition of R*, a € ©5. But this impliesa ¢ I+, for otherwiseba € I by the
filter property andz < <a, which would contradict consistency of thedi¥,, ©5).
This proves that for a2, ©2) with (I, {a}) R* (I, ©2), we haven ¢ I, as desired.

Theorem 5LetC be anyCS4-category. Then there is a canonical interpretatiph of
CS4 in C such that

— aformulaA is mapped to an objedtd] of C;

— a natural deduction proof) of B using formulaeA,,..., A, as hypotheses is
mapped to a morphisipy] from 4] x - -- x [A4,] to [B];
— each two natural deduction proofs and ) of B using formulaeA,, ..., A, as

hypotheses which are equal (modulo normalisation of proofs) are mapped to the
same morphism, in other wordg] = [¢].

Proof. We use an induction over the structure of natural deduction proofs.
We describe the modality rules, starting with the-rule. Consider a proap

I Fn [DAl T DATI]
Xz  On X
04, --- OA, B
Uz
OB

By induction hypothesis, lefy, . .., f,, f be the interpretation af1, . . . , ¢,,, ¢ respec-
tively. Then the interpretation af is

(Bf)oma,,. . A, 064, X---64,)0 (f1 XX fr)

wherem 4, ... 4, isinductively defined by

yeeey

MAL, A1, Am = AL XX Ay 1, A © (AL Ay X 1da,,)

TheOg-rule is modelled by the morphism
Dually, the®z-rule is modelled by the morphismy . Last, we consider théc-rule.
Consider a proof

Fl Fn I [DAIDANB]
C 91 ) Y
OA; --- 04, OB oC
Ce
oC

By induction hypothesis, lefi, ..., f., f, g be the interpretation ofy, ..., ¢,, P, ¢
respectively. Then the interpretationébis

pcogosta, . A, Bo(fix- X fnxf)



where the morphismat 4, . 4, is inductively defined by

We omit the routine verification that the desired equalities hold.

Theorem 6

(i) There exists &S4-category such that all morphisms are interpretations of natu-
ral deduction proofs.

(ii) Ifthe interpretation of two natural deduction proofs is equal in@$4-categories,
then the two proofs are equal modulo proof-normalisation in natural deduction.

Proof. We show both statements by constructinG®4-categoryC out of the natural
deduction proofs. We give here only the morphisms, and omit the verification that the
required equalities between proofs hold. We write a natural deduction proof

A

B

asA - B. The objects of the category are formulae, and a morphism between B

is a proof of B using A as a hypothesis. The identity morphism is the basic axiom

A, and composition is given by cut. The bi-cartesian closed structutéadfows in the
usual way from the conjunction, disjunction and implication in intuitionistic logic.

The O-modality gives rise to a monoidal comonad. The natural transformations

64:0A — ODOA andey: 0A — A are given by thélZ- andO&-rules applied to

the identity axiom$1 A + O A, respectively. The functar sends an object to O A and

a morphismf: A - B to the morphisndf: OA + OB. This is obtained by applying
theOZ-rule to the composition of andOA + A. Dually, the®-modality gives rise to

a monad ort. The strength is given by the proof obtained thus

[OA][B]
i
OAAB
OA] [B] <©(OAAB) !
[ OF
O(OAAN B) s
OAAOB — O(0AA B) -

This categornyC shows now the claim: Assume an equation between proofs holds
in all CS4-categories. Becauskis a CS4-category, it holds ir€. But equality inC is
equality between natural deduction proofs, hence the two proofs are equal.




