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Abstract

In the most popular logics combining knowl-
edge and awareness, it is not possible
to express statements about knowledge of
unawareness such as “Ann knows that Bill
is aware of something Ann is not aware of”
– without using a stronger statement such
as “Ann knows that Bill is aware of p and
Ann is not aware of p”, for some particu-
lar p. Recently, however, Halpern and Rêgo
(2006) introduced a logic in which such state-
ments about knowledge of unawareness can
be expressed. The logic extends the tradi-
tional framework with quantification over for-
mulae, and is thus very expressive. As a con-
sequence, it is not decidable. In this paper we
introduce a decidable logic which can be used
to reason about certain types of unawareness.
The logic extends the traditional framework
with an operator expressing full awareness,
i.e., the fact that an agent is aware of every-
thing, and another operator expressing rel-
ative awareness, the fact that one agent is
aware of everything another agent is aware
of. The logic is less expressive than Halpern’s
and Rêgo’s logic. It is, however, expressive
enough to express all of Halpern’s and Rêgo’s
motivating examples. In addition to proving
that the logic is decidable and that its sat-
isfiability problem is PSPACE-complete, we
present an axiomatisation which we show is
sound and complete.

1 Introduction

Formal models of knowledge or belief extended with a
notion of awareness has been of interest to researchers
in several fields, including economics and game the-
ory, philosophy, and multi-agent systems. One of

the most popular frameworks is the logic of general
awareness (Fagin and Halpern, 1988), which has been
shown (Halpern, 2001) to be a generalisation of frame-
works used by economists (Modica and Rustichini,
1994, 1999). The logic of general awareness has a tra-
ditional (implicit) knowledge operator Ki where Kiφ
is interpreted as truth of φ in all accessible worlds in a
Kripke structure, in addition to an awareness operator
Ai where Aiφ is interpreted by a syntactic assignment
of truth value, and an explicit knowledge operator Xi

such that Xiφ is interpreted as the conjunction of Kiφ
and Aiφ. This framework is very flexible and gen-
eral. However, as recently pointed out by Halpern and
Rêgo (2006), in many situations, agents have knowl-
edge about their own or others’ unawareness, and this
cannot be expressed properly in the logic of general
awareness. An example, taken directly from (Halpern
and Rêgo, 2006), is the following.

Example 1

Consider an investor (agent 1) and an investment fund
broker (agent 2). Suppose that we have two facts that
are relevant for describing the situation: the NASDAQ
index is more likely to increase than to decrease tomor-
row (p), and Amazon will announce a huge increase
in earnings tomorrow (q). [...] [B]oth agents explicitly
know that the NASDAQ index is more likely to increase
than to decrease tomorrow. However, the broker also
explicitly knows that Amazon will announce a huge in-
crease in earnings tomorrow. Furthermore, the broker
explicitly knows that he (broker) is aware of this fact
and the investor is not. On the other hand, the in-
vestor explicitly knows that there is something that the
broker is aware of but he is not.

In order to be able to reason formally about situa-
tions involving knowledge of unawareness such as this
one, Halpern and Rêgo (2006) introduced a logic which
extends the logic of general awareness with variables
standing for formulae and quantification over these
variables. For example, the formula X1(∃x (A2x ∧



¬A1x )) expresses the fact that the investor, in the ex-
ample above, explicitly knows that there is some fact
he is unaware of but the broker is aware of. This intro-
duction of quantifiers makes the logic very expressive,
but unfortunately also makes it undecidable.

There is a subtle distinction in the motivating argu-
ments of Halpern and Rêgo (2006). On the one hand,
it is initially argued that it would be useful to express
the fact that an agent “knows that there are facts of
which he is unaware”. We will refer to awareness of ev-
erything as full awareness. Explicit knowledge of the
lack of full awareness can be expressed in Halpern’s
and Rêgo’s logic by a formula such as Xi(∃x¬Aix ).
On the other hand, Example 1 above requires the ex-
pression of knowledge of a more specific property of
unawareness: that an agent (explicitly) knows that he
is unaware of some fact which another agent is aware
of. We will refer to this latter form of unawareness as
lack of relative awareness. We say that an agent has
relative awareness with respect to another agent if he
is aware of everything the other agent is aware of. As
discussed above, knowledge of lack of relative aware-
ness can be expressed in Halpern’s and Rêgo’s logic by
a formula such as Xi(∃x (Aj x ∧¬Aix )). Full awareness
implies relative awareness, but in general not the other
way around.

In this paper, we introduce an alternative logic for
reasoning about knowledge of unawareness, which ex-
tends the logic of general awareness with explicit oper-
ators for full and relative awareness. For each agent i ,
the logic has a nullary operator Ci standing for “agent
i has full awareness”, and for each agent i and each
agent j a nullary operator Rij standing for for “agent
j has relative awareness wrt. agent i”. In this lan-
guage, both types of knowledge of unawareness men-
tioned above can be expressed, viz. as Xi¬Ci and
Xi¬Rji , respectively.

With these operators in place of unlimited quantifica-
tion over formulae, the logic is, obviously, much less
expressive than Halpern’s and Rêgo’s logic. However,
it can be used to express all the motivating examples
in (Halpern and Rêgo, 2006). Furthermore, the logic
presented in this paper is decidable.

Of related work, both Modica and Rustichini (1999)
and Halpern (2001) develop logics of unawareness, but
for the single-agent case only. Board and Chung (2006)
add awareness operators to first order logic. Sillari
(2006) also combines first-order logic and awareness,
this time interpreted over neighborhood structures.
There is a fundamental difference, however, between
quantification in these two latter frameworks and in
that of Halpern and Rêgo (2006). In (Board and
Chung, 2006) and (Sillari, 2006), quantification is over

objects of the universe of discourse, while in (Halpern
and Rêgo, 2006) quantification is over formulae. In
general, we need the latter type of quantification to
reason about unawareness of formulae. Heifetz et al.
(2007) develop a set theoretic, as opposed to the syn-
tactic approach of Halpern and Rêgo (2006), frame-
work for unawareness.

This paper is organised as follows. In the next sec-
tion we introduce the logic of general awareness, and
Halpern’s and Rêgo’s logic. Our logic of full and rela-
tive awareness is then presented in Section 3, and an
axiomatisation proved sound and (weakly) complete
in Section 4. In Section 5 we compare the logic to
Halpern’s and Rêgo’s logic. The satisfiability problem
for the logic is studied in Section 6. We prove that the
problem is decidable, and that it is PSPACE-complete.
We conclude in Section 7.

2 Background: Logics of Awareness
and Unawareness

In this paper we consider several logical languages L.
We define the meaning of each of these by defining the
concept of a formula φ ∈ L being true (or satisfied) in
the context of the combination of a model M ∈ M in
some class of models M and a state s of M , written
(M , s) |= φ. φ is valid (wrt. M), written |= φ, if
(M , s) |= φ for all M ∈ M and all states s in M . We
also consider (Hilbert style) logical systems S over L;
�S φ means that φ is derivable in S . S is sound wrt.
M iff �S φ implies that |= φ; S is complete if the
converse holds.

2.1 Awareness Structures and The Logic of
General Awareness

We briefly recall the logic of general awareness (Fagin
and Halpern, 1988) (our notation is similar to that of
Halpern and Rêgo (2006)).

An awareness structure for n agents over primitive
propositions Φ and logical language L is a tuple
(S , π,K1, . . . ,Kn ,A1, . . . ,An), where S is a non-
empty set of states, π : S → Φ says which primitive
propositions are true in each state, Ki ⊆ S × S is the
accessibility relation for agent i , and Ai : S → 2L

defines the awareness set Ai(s) ⊆ L for each agent i
in each state s ∈ S . Intuitively, (s , t) ∈ Ki means
that when the state of the world actually is s agent i
considers it possible that the state of the world is t ;
φ ∈ Ai(s) means that agent i is aware of the formula
φ when the state of the world is s .

We shall consider several model classes, defined by
requiring the accessibility relations to be reflexive
((s , s) ∈ Ki for all s ∈ S ), transitive ((s , t) ∈ Ki



and (t , u) ∈ Ki implies that (s , u) ∈ Ki) and/or
Euclidian ((s , t) ∈ Ki and (s , u) ∈ Ki implies that
(t , u) ∈ Ki). For C ⊆ {r , t , e}, we use MC

n (Φ,L) to
denote the awareness structures for n agents over Φ
and L where the accessibility relations are required to
have the properties in C (“r” means reflexive, etc.).
We sometimes write Mn(Φ,L) for M∅

n(Φ,L) – the
class of all awareness structures.

Given a number n of agents and a set Φ of prim-
itive propositions, the formulae φ of the language
LK ,X ,A

n (Φ) are defined by the following grammar:

φ ::= p | φ1 ∧ φ2 | ¬φ | Kiφ | Xiφ | Aiφ

where p ∈ Φ and 1 ≤ i ≤ n. The usual derived propo-
sitional connectives are used, for example we write
φ ∨ ψ for ¬(¬φ ∧ ¬ψ) and so on. The formula Aiφ
means that agent i is aware of φ.

Below we describe how awareness structures for n
agents over primitive propositions Φ and logical lan-
guage LK ,X ,A

n (Φ) are used to interpret the language
LK ,X ,A

n (Φ). In the following sections of the paper we
shall also look at other languages L, and we will then
use awareness structures for n agents over Φ and L to
interpret L.

The notion of a formula φ ∈ LK ,X ,A
n (Φ) being true, or

satisfied, in a state s of an awareness structure M =
(S , π,K1, . . . ,Kn ,A1, . . . ,An) ∈ Mn(Φ,LK ,X ,A

n (Φ)),
written (M , s) |= φ, is defined as follows, where p ∈ Φ
and 1 ≤ i ≤ n:

(M , s) |= p ⇔ p ∈ π(s)
(M , s) |= φ1 ∧ φ2 ⇔ (M , s) |= φ1 and (M , s) |= φ2

(M , s) |= ¬φ ⇔ (M , s) 
|= φ
(M , s) |= Kiφ ⇔ ∀(s , t) ∈ Ki , (M , t) |= φ
(M , s) |= Aiφ ⇔ φ ∈ Ai(s)
(M , s) |= Xiφ ⇔ (M , s) |= Kiφ ∧ Aiφ

Example 2 (Example 1 continued) (Adapted
from Halpern and Rêgo (2006)). The situation de-
scribed in Example 1 up until immediately before the
last sentence (“On the other hand..”) can be modelled
by an awareness structure M2 = (S , π,K1,K2,A1,A2)
for 2 agents over the set {p, q} of primitive proposi-
tions and logical language LK ,X ,A

2 ({p, q}), defined as
follows. S = {s}; π(s) = {p, q}; K1 = K2 = {(s , s)};
A1(s) = {p}; A2(s) = {p, q,A2q,¬A1q,A2q ∧¬A1q}.
The following hold:

• (M2, s) |= X1p ∧ X2p: both the investor and the
broker explicitly know that the NASDAQ index is
more likely to increase than to decrease tomorrow

• (M2, s) |= ¬X1q ∧ X2q: the investor does not ex-
plicitly know that Amazon will announce a huge
increase in earnings tomorrow, but the broker does

• (M2, s) |= X2(A2q ∧ ¬A1q): the broker explicitly
knows that he (broker) is aware of this fact (re-
garding Amazon) and the investor is not

2.2 A Logic of Knowledge of Unawareness

Halpern and Rêgo (2006) extended the logic of general
awareness in order to be able to reason about knowl-
edge of unawareness. We give a brief review of their
logic, henceforth called the HR logic.

Let X be a countably infinite set of variables. The
language extends the language of the logic of gen-
eral awareness with variables, and formulae of the
form ∀xφ, where x is a variable. Formulas of
L∀,K ,X ,A

n (Φ,X ) is defined by the following grammar:

φ ::= p | φ1 ∧ φ2 | ¬φ | Kiφ | Xiφ | Aiφ | ∀xφ | x
where p ∈ Φ, 1 ≤ i ≤ n and x ∈ X . We use the usual
abbreviations in addition to ∃xφ for ¬∀xφ. A sentence
is a formula without free variables; S∀,K ,X ,A

n (Φ,X ) de-
notes the set of all sentences.

Satisfaction of a L∀,K ,X ,A
n (Φ,X ) formula is defined in

relation to a tuple consisting of an awareness struc-
ture M ∈ Mn(Φ,S∀,K ,X ,A

n (Φ,X )), a state s in M ,
and a syntactic valuation V : X → LK ,X ,A

n (Φ)1. Note
that awareness sets only contain sentences of L∀,K ,X ,A

n .
The definition of satisfaction is by nested induction,
first over the total number of free and bound variables
and then on the length of the formula. In addition to
the clauses which appear in the definition of satisfac-
tion for LK ,X ,A

n (Φ), the following two are used. We
refer to Halpern and Rêgo (2006) for a more thorough
explanation of the definition.

(M , s ,V) |= φ⇔
(M , s ,V) |= φ[x1/V(x1), . . . , xk/V(xk)]
when Free(φ) = {x1, . . . , xk}

(M , s ,V) |= ∀xφ⇔
(M , s ,V ′) |= φ
∀V ′ such that V ′ ∼x V

where Free(φ) ⊂ X denotes the set of free2 variables
(not bound by a quantifier) occurring in φ; φ[x1/V(x1),
. . . , xk/V(xk)] means the formula resulting from re-
placing in φ all free occurrences of xj with the for-
mula V(xj ) (for each j ); and V ′ ∼x V means that
V ′(y) = V(y) for every y ∈ X \ {x}. For more details
regarding this semantics and why it is well defined, we
again refer to Halpern and Rêgo (2006).

1Note that in this framework, the interpretation of a
variable is restricted to the language of the classical logic
of general awareness. In particular, a variable can not be
interpreted as a formula containing a variable or a quanti-
fier.

2Defined essentially as in first-order logic.



Note that satisfaction of a formula without free vari-
ables does not depend on the syntactic valuation at
all; thus we write (M , s) |= φ whenever (M , s ,V) |= φ
for any V , for such a formula.

As an example, consider the formula φ = ∀xAix .
Given a state s in model M , we have that (M , s) |=
∀xAix iff (M , s ,V) |= ∀xAix for some arbitrary V iff
for every V ′ ∼x V we have that (M , s ,V ′) |= Aix iff
for every ψ ∈ LK ,X ,A

n (Φ) we have that ψ ∈ Ai(s).

Example 3 (Example 2 continued) (Adapted
from Halpern and Rêgo (2006)). Now we can take the
last sentence in Example 1 into account in our model
of the situation. Let M3 ∈ Mn(Φ,S∀,K ,X ,A

n (Φ,X )) be
as M2, except that we let the investor be aware of the
fact that there is something the broker is aware of but
the investor is not: A1(s) = {p, ∃x (A2x ∧ ¬A1x )}.
The formulae in Example 2 continue to hold in M3 as
well. The following two formulae (from Halpern and
Rêgo (2006)) illustrate reasoning about unawareness.
We have that:

• (M3, s) |= X1(∃x (A2x ∧ ¬A1x )): the investor ex-
plicitly knows that there is something that the bro-
ker is aware of but he is not

• (M3, s) |= ¬X2(∃x (A2x ∧¬A1x )): the broker does
not explicitly know that there is something he is
aware of but the investor is not

Let Kn,∀ be the axiom system over the language
L∀,K ,X ,A

n (Φ,X ) consisting of the following axioms and
rules:

Prop all propositional tautologies

K Ki(φ→ ψ) → (Kiφ→ Kiψ)

A0 Xiφ↔ Kiφ ∧ Aiφ

1∀ ∀xφ → φ[x/ψ] if ψ is quantifier free and substi-
tutable3 for x in φ

K∀ ∀x (φ→ ψ) → (∀xφ→ ∀xψ)

N∀ φ→ ∀xφ if x is not free in φ

Barcan ∀xKiφ→ Ki∀xφ
Gen∀ From φ infer ∀xφ
MP From φ and φ→ ψ infer ψ

Gen From φ infer Kiφ

Furthermore, given the following three extra axioms,
3Substitutable means that no free variable of ψ becomes

bound as a result of the substitution.

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

KC
n,∀ is the system obtained by adding axioms C to

Kn,∀, where C ⊆ {T , 4, 5}. It is well known that T , 4
and 5 correspond to the accessibility relations being
reflexive, transitive and Euclidian, respectively.

Theorem 1 (Halpern and Rêgo (2006)) Let C ⊆
{T , 4, 5} and let C be the corresponding sub-
set of {r , t , e}. If Φ is countably infinite,
KC

n,∀ is a sound and complete axiomatisation
of the language L∀,K ,X ,A

n (Φ,X ) with respect to
MC

n (Φ,L∀,K ,X ,A
n (Φ,X )).

3 A Logic of Full and Relative
Awareness

The logic of full and relative awareness is, like the HR
logic, an extension of the logic of general awareness.
Unlike the HR logic, it does not have variables or ex-
plicit quantification.

The language LC ,R,K ,X ,A
n (Φ) is defined by the follow-

ing grammar:

φ ::= p | φ1 ∧ φ2 | ¬φ | Kiφ | Xiφ | Aiφ | Ci | Rij

where p ∈ Φ and i , j ∈ [1,n]. Note that the two new
connectives Ci and Rij are nullary (they don’t take
any arguments). Ci is intended to mean that agent i
has full awareness. Rij is intended to mean that agent
j has relative awareness with respect to agent i , i.e.,
that j is aware of everything i is aware of.

Satisfaction of LC ,R,K ,X ,A
n (Φ) formulae is defined in

relation to an awareness structure M ∈ Mn(Φ,
LC ,R,K ,X ,A

n (Φ)) and a state s of M . The following
two clauses describe the new constructs, the clauses
for the rest of the language are as before.

(M , s) |= Ci ⇔ Ai(s) = LC ,R,K ,X ,A
n (Φ)

(M , s) |= Rij ⇔ Ai(s) ⊆ Aj (s)

Since LC ,R,K ,X ,A
n (Φ) is infinite, Ci cannot be ex-

pressed by a finite conjunction of the form Aiφ1 ∧
Aiφ2 ∧ · · ·. ¬Ci means that there exists a formula
φ ∈ LC ,R,K ,X ,A

n (Φ) such that φ 
∈ Ai(s). Thus, Xi¬Ci

expresses knowledge of unawareness: agent i explicitly
knows that there is something he is unaware of. Rij

means that i ’s awareness set is included in j ’s aware-
ness set, that j is aware of everything i is aware of.
¬Rij means that there is something i is aware of but
j is not.



It is possible that Ki¬Ci is true, without there being
any φ such that Ki¬Aiφ is true, and it is possible that
Ki¬Rji is true without there being any φ such that
Ki(Ajφ ∧ ¬Aiφ) is true.

Example 4 (Example 3 continued) Like in Ex-
ample 3, we extend the awareness structures of Ex-
ample 2 to take awareness about unawareness into ac-
count in order to model the fact described in the last
sentence in Example 14. The fact that there is some-
thing that the broker is aware of but the investor is not
aware of can now be expressed by the formula ¬R21.
Thus, we let M4 ∈ Mn(Φ, LC ,R,K ,X ,A

n (Φ)) be like M2,
except that we set A1(s) = {p,¬R21}.
The two formulae can now be expressed as follows. We
have that:

• (M4, s) |= X1(¬R21)

• (M4, s) |= ¬X2(¬R21)

Note that the logic is not compact. As a counter
example take the theory {¬Ci} ∪ {Aiφ : φ ∈
LC ,R,K ,X ,A

n (Φ)}, or the theory {¬Rij }∪{¬Aiφ∨Ajφ :
φ ∈ LC ,R,K ,X ,A

n (Φ)}.
In the next section, we present an axiomatisation of
the logic.

4 Axiomatisation

Let S be the axiom system consisting of the follow-
ing axioms and inference rules, over the language
LC ,R,K ,X ,A

n (Φ):

Prop all propositional tautologies

K Ki(φ→ ψ) → (Kiφ→ Kiψ)

A0 Xiφ↔ Kiφ ∧ Aiφ

A1 Rij → (Aiφ→ Ajφ)

A2 Rii

A3 Rij ∧Rjk → Rik

C1 Ci → Aiφ

C2 Ci → Rji

C3 (Ci ∧ Rij ) → Cj

MP From φ and φ→ ψ infer ψ
4Note that it does not make sense to use the aware-

ness structure M3 of Example 3 directly to interpret
LC ,R,K ,X ,A

n (Φ), because this structure models awareness of
formulae involving variables and quantifiers.

Gen From φ infer Kiφ

Prop-A0, MP and Gen axiomatise the logic of general
awareness (Fagin and Halpern, 1988). A1 says that rel-
ative awareness implies that the other agents’ aware-
ness of a particular formula again implies awareness of
the same formula. A2 and A3 say that relative aware-
ness is reflexive and transitive, respectively. C1 says
that full awareness implies awareness of any particular
formula. C2 says that full awareness implies relative
awareness (wrt. any other agent), and C3 says that
relative awareness implies full awareness in the case
that the other agent has full awareness.

Furthermore, SC is the system obtained by adding ax-
ioms C to S, where C ⊆ {T , 4, 5}.

Theorem 2 (Soundness and Weak Completeness)
Let C ⊆ {T , 4, 5} and let C be the corresponding sub-
set of {r , t , e}. SC is a sound and weakly complete
axiomatisation of the language LC ,R,K ,X ,A

n (Φ) with
respect to MC

n (Φ,LC ,R,K ,X ,A
n (Φ)).

Proof. Soundness is straightforward.

For completeness, let φ be a SC consistent formula.
We will show that φ is satisfiable in
MC

n (Φ,LC ,R,K ,X ,A
n (Φ)), which completes the proof.

Build a canonical (standard) Kripke structure M c =
(S c , π,K1, . . . ,Kn) in the standard way:

• S c is the set of all maximal SC consistent sets of
formulae

• (s , t) ∈ Ki iff Kiψ ∈ s implies that ψ ∈ t , for all
formulae ψ

• p ∈ π(s) iff p ∈ s

To get a proper model M =
(S c , π,K1, . . . ,Kn ,A1, . . . ,An), we extend M c

with awareness sets for each state. Let s ∈ S c and i
be an agent. Ai(s) is defined as follows. Let Subf (φ)
denote the set of subformulae of φ (including φ itself).
Choose some ψ1, . . . , ψn ∈ LC ,R,K ,X ,A

n (Φ) such that
ψj 
∈ Subf (φ) for any j ∈ [1,n]. We will refer to
ψ1, . . . , ψn as witness formulas. We now proceed in
n steps; in each step i we define an awareness set X i

k

for each agent k :

• X 0
i =

{ LC ,R,K ,X ,A
n (Φ) Ci ∈ s

{ψ : Aiψ ∈ s} ∩ Subf (φ) otherwise

• X i
k =




X i−1
k ∪ {ψi} Rik ∈ s and there is a j

such that ¬Rij ∈ s
X i−1

k otherwise



Set Ai(s) = X n
i .

If r ∈ C , T ∈ C ensures that each Ki is reflexive, and
similarly for t/4 and e/5 (can be shown in the standard
way). Thus, M ∈ MC

n (Φ,LC ,R,K ,X ,A
n (Φ)). We now

show a truth lemma: for every formula ψ ∈ Subf (φ),

(M , s) |= ψ ⇔ ψ ∈ s

and then we are done, because φ ∈ Subf (φ) and φ ∈ sφ

for some sφ ∈ S c, and thus (M , sφ) |= φ.

The proof is by structural induction over ψ ∈ Subf (φ):

• ψ = Aiγ: for the direction to the left, Aiγ ∈ s
implies that γ ∈ X 0

i ⊆ Ai(s). For the direction
to the right, let γ ∈ X n

i . If Ci ∈ s then Aiγ ∈ s
by C1. If Ci 
∈ s , it must be the case that γ ∈ X 0

i

since γ ∈ Subf (φ) (γ cannot be one of the witness
formulas ψj ), and thus Aiγ ∈ s .

• ψ = Rij : for the direction to the left, let Rij ∈ s .
In the case that Ci ∈ s , Cj ∈ s by C3, and thus
Ai(s) = Aj (s) = LC ,R,K ,X ,A

n (Φ) which implies
that (M , s) |= ψ. Assume that Ci 
∈ s . Let γ ∈
Ai(s). We must show that γ ∈ Aj (s). Either
γ ∈ X 0

i , or γ was added in step l for some l (i.e.,
γ = ψl ). In the first case Aiγ ∈ s , so Ajγ ∈ s by
A1, and γ ∈ X 0

j ⊆ Aj (s) since γ ∈ Subf (φ). In
the second case Rli ∈ s , and there exists some m
such that ¬Rlm ∈ s . Since Rli ∈ s and Rij ∈ s ,
Rlj ∈ s by A3. That means that γ = ψl was
included in X l

j as well in step l (the condition that
there must be an m such that ¬Rlm ∈ s holds).
Thus, γ ∈ Aj (s).

For the direction to the right, let Rij 
∈ s , we
must show that Ai(s) 
⊆ Aj (s). ¬Rij ∈ s , and
since Rii ∈ s by A2, ψi ∈ X i

i by construction.
ψi 
∈ Subf (φ), and by C2 ¬Cj ∈ s , so if it were the
case that ψi ∈ Aj (s) the only possibility is that
ψi ∈ X i

j . But then it would have to be the case
that Rij ∈ s , which is not true. Thus, ψi 
∈ Aj (s),
and since ψi ∈ Ai(s) we have that Ai(s) 
⊆ Aj (s).

• ψ = Ci : For the direction to the left, let Ci ∈
s . Ai(s) = LC ,R,K ,X ,A

n (Φ) by construction, so
(M , s) |= Ci .

For the direction to the right, let Ai(s) =
LC ,R,K ,X ,A

n (Φ). The only way that can happen
is when Ci ∈ s (otherwise, Ai(s) ⊆ Subf (φ) ∪
{ψ1, . . . , ψn}).

• ψ = Kiγ: this case can be shown in the standard
way.

Let Kiγ ∈ s . To show that (M , s) |= Kiγ, con-
sider an arbitrary t such that Ki(s , t). By the
definition of Ki , γ ∈ t , and by the inductive

hypothesis (γ ∈ Subf (φ)) (M , t) |= γ. Hence,
(M , s) |= Kiγ.
Let Kiγ 
∈ s . We will find a t with Ki(s , t) such
that (M , t) 
|= γ. This will show that (M , s) 
|=
Kiγ. Consider the set {¬γ} ∪ {χ : Kiχ ∈ s}.
This set is consistent (otherwise �S χ1 ∧ . . . ∧
χk → γ for some χ1, . . . , χk from this set, hence
�S Kiχ1 ∧ . . . ∧ Kiχk → Kiγ, which would force
Kiγ ∈ s). So, it can be extended to a mcs t . Since
¬γ ∈ t , γ 
∈ t , and by the inductive hypothesis
(M , t) 
|= γ.

• The cases for atomic propositions, ¬ and ∧ are
straightforward.

�

5 Relationship to the HR Logic

Here we briefly comment on the relative meaning of
∀xAix and ∀x (Aix → Aj x ) in the HR logic, and full
and relative awareness formulas Ci and Rij in our
logic. One might hope to define an embedding of our
logic into the HR logic by using the straightforward
translation of Ci as ∀xAix and Rij as ∀x (Aix → Aj x ).
However, this would not work for the following rea-
son. ∀xAix means, in the HR logic, that i is aware
of φ for every φ ∈ LK ,X ,A

n (Φ) in the classical logic of
general awareness. There might still exist sentences
which i is not aware of, such as ∀xAix itself (which
is not in LK ,X ,A

n (Φ)). Conversely, ∀x¬Aix does not
mean that i ’s awareness set is empty, it strictly speak-
ing means that i ’s awareness set does not contain
formulae from LK ,X ,A

n (Φ). i might still be aware of
other formulae. This means that a formula such as
(∀xAix ) ∧ (¬Ai∀xAix ) is consistent in the HR logic.
In our logic, however, Ci ∧ ¬AiCi is not consistent.
This point is illustrated by the C1 and the 1∀ axioms
of the respective logics. The former is unrestricted; full
awareness means awareness of any formula, and, e.g.,
Ci → AiCi is an instance. The latter is restricted; for
example is ∀xAix → Ai∀xAix not an instance. Thus,
Ci does not correspond to ∀xAix in the HR logic (and
similarly for relative awareness).

Thus, while it is obvious that the HR logic is more
expressive than our logic, it is also true that our logic
can express properties of (un)awareness which cannot
be expressed in the HR logic. An example is “agent i
is not aware of anything”.

6 Decidability and Complexity

We are going to show that the satisfiability prob-
lem for MC

n (Φ,LC ,R,K ,X ,A
n (Φ)) for any C ⊆ {r , t , e}



(or, equivalently, the validity problem with respect to
MC

n (Φ,LC ,R,K ,X ,A
n (Φ)), or the derivability problem

with respect to SC where C ⊆ {T , 4, 5}), is decidable.
We do this by a slight adaptation of the corresponding
proof for multi-modal logics of knowledge (see, e.g.,
Halpern and Moses (1992)). Namely, we show that
each consistent formula φ has a satisfying model where
the number of states is bounded by the size of the for-
mula, and the size of each agent’s awareness set is ei-
ther equal to the whole language, or is also bounded
by the size of the formula.

Definition 1 (φ-bounded size) With every for-
mula φ ∈ LC ,R,K ,X ,A

n (Φ) we associate an arbitrary
but fixed set {ψ1, . . . , ψn} ⊂ LC ,R,K ,X ,A

n (Φ) such that
ψj 
∈ Subf (φ) for 1 ≤ j ≤ n where n is the number of
agents.

Let φ be a formula of LC ,R,K ,X ,A
n (Φ). A model M =

(S , π,K1, . . . ,Kn ,A1, . . . ,An) has φ-bounded size iff

• For any s ∈ S and any agent i, Ai(s) is either
equal to LC ,R,K ,X ,A

n (Φ) or Ai(s) ⊆ Subf (φ) ∪
{ψ1, . . . , ψn}. Note that in the latter case Ai(s)
is finite.

• |S | ≤ f (n, |φ|) for some effectively computable
function f .

First, observe that each MC
n (Φ,LC ,R,K ,X ,A

n (Φ)) sat-
isfiable formula φ is satisfiable in a φ-bounded size
model:

Lemma 1 Let C ⊆ {r , t , e}.
Every MC

n (Φ,LC ,R,K ,X ,A
n (Φ))-satisfiable for-

mula φ has a φ-bounded size model M =
(S , π,K1, . . . ,Kn ,A1, . . . ,An) such that

• for some s in S , (M , s) |= φ

• each Ki satisfies the conditions C

Proof. Given a satisfiable formula φ, we construct
a model M ′ in exactly the same way as in the proof
of Theorem 2. The awareness sets in this model sat-
isfy the first property of φ-bounded size models. To
obtain the bound on the number of states, we apply
a filtration technique to M ′. We define an equiva-
lence relation on the set of states S ′ of M ′ as follows:
s ≡ t if s and t agree on the truth values of for-
mulas from Subf (φ) and for every i , Ai(s) = Ai(t).
We will denote the result of filtration of M ′ by M =
(S , π,K1, . . . ,Kn ,A1, . . . ,An). The set of states S of
M is the set of equivalence classes [s ] with respect
to ≡ from M ′. The assignment π is M is defined in
the standard way, namely p ∈ π([s ]) if p ∈ Subf (φ)
and (M ′, s) |= p. We do not change the awareness

sets: Ai([s ]) = Ai(s), for every i . Finally, the acces-
sibility relations Ki in M , for every i , are defined as
usual in a filtration corresponding to a set of condi-
tions C ⊆ {r , t , e}, so that they satisfy the following
conditions (see Blackburn et al. (2001)):

F1 If K′
i(s , t) then Ki([s ], [t ])

F2 if Ki([s ], [t ]) then for all Kiψ ∈ Subf (φ), if
(M , s) |= Kiψ then (M , t) |= ψ.

All C ⊆ {r , t , e} admit filtration (that is, a suitable
definition for Ki exists and Ki in the resulting model
satisfies C ). The reader is referred to e.g. Black-
burn et al. (2001) for possible definitions. For ex-
ample, filtration for the equivalence relation satisfying
{r , t , e} is defined as follows: Ki([s ], [t ]) iff for every
Kiψ ∈ Subf (φ), (M ′, s) |= Kiψ ⇔ (M ′, t) |= Kiψ.

Filtration of a model M ′ satisfying φ gives us a model
M ∈ MC

n (Φ,LC ,R,K ,X ,A
n (Φ)) for φ, where the size of

S is bounded (admittedly, by a rather large number).
Namely, observe that there are at most 2|φ| different
states with respect to truth assignments to the subfor-
mulae of φ, and each of those states can have at most
2|φ|+n+1 choices for each of the n awareness sets, which
is 2n(|φ|+n+1) choices in total. The maximal number
of possible states in M is therefore 2|φ| × 2n(|φ|+n+1),
or at most 22n(|φ|+n), which is 2O(|φ|) if we treat the
number of agents n as a constant.

The inductive proof that for every ψ ∈ Subf (φ), and
every s , (M ′, s) |= ψ ⇔ (M , [s ]) |= ψ is standard.

ψ = p: trivial from the definition of π.

Ai ,Rij ,Ci : trivial since Ai(s) = Ai([s ]), for every i .

¬,∧: by standard induction.

ψ = Kiγ.

Assume (M ′, s) |= Kiγ. Suppose Ki([s ], [t ]). We
need to show that (M , [t ]) |= γ. By the second
property of filtrations F2, (M ′, s) |= Kiγ and
Ki([s ], [t ]) implies (M ′, t) |= γ. By the inductive
hypothesis, this implies (M , [t ]) |= γ.

Assume (M , [s ]) |= Kiγ. Then for every [t ] such
that Ki([s ], [t ]), (M , [t ]) |= γ. Let K′

i(s , t). We
need to show that (M ′, t) |= γ. By the first prop-
erty of filtrations F1, K′

i(s , t) implies Ki([s ], [t ]).
We know that (M , [t ]) |= γ, so by the inductive
hypothesis, (M ′, t) |= γ, which is what we needed
to show.

�

Decidability follows immediately.



Theorem 3 (Decidability) The satisfiability prob-
lem for MC

n (Φ,LC ,R,K ,X ,A
n (Φ)), where C ⊆ {r , t , e},

is decidable.

Proof. Decidability is entailed by the following facts.

• Each φ-bounded size model is finitely repre-
sentable. Although an awareness set may be equal
to the complete language LC ,R,K ,X ,A

n (Φ), this fact
can be finitely represented by using some symbol
representing LC ,R,K ,X ,A

n (Φ).

• For a given formula φ, there is a fixed finite num-
ber of different φ-bounded size models.

• Given a formula φ and a finite description
of a φ-bounded size model, we can effectively
check whether it is indeed a representation of
a MC

n (Φ,LC ,R,K ,X ,A
n (Φ)) model and whether it

satisfies φ.

This gives a decision procedure for the satisfiability
problem for MC

n (Φ,LC ,R,K ,X ,A
n (Φ)) as follows. Given

a formula φ, let k be the number of φ-bounded size
models. Enumerate these models, and for each check
whether it satisfies φ or not. This procedure will
terminate after we have checked φ against each of the
k models. By Lemma 1, φ is satisfiable if and only if
it was satisfied by one of the φ-bounded size models. �

Decidability via bounded model property gives us a
rather high upper bound on the complexity of the sat-
isfiability problem of our logic. We can however show
that this problem is no harder than the corresponding
problem for classical multi-modal logics of knowledge:

Theorem 4 (Complexity) The satisfiability prob-
lem for MC

n (Φ,LC ,R,K ,X ,A
n (Φ)) for any C ⊆ {r , t , e}

is PSPACE-complete.

Proof. (Sketch) PSPACE-hardness follows from
the results for corresponding multi-modal logics, see
Halpern and Moses (1992).

To show PSPACE upper bound, we adapt the tableau
algorithm of Halpern and Moses (1992) for logics KC

n ,
C ⊆ {T , 4, 5}. The idea is to show that we can ex-
tend the step for forming a fully expanded proposi-
tional tableau by expansion rules for formulas of the
form Aiψ, Ci and Rij in such a way that information
about every node in the tableau can still be stored us-
ing space polynomial in |φ| (the formula for which we
are constructing a tableau) and the number of agents
n. The modal depth of the tableau is not affected.
Then we add additional conditions for when a node
is marked as unsatisfiable. Finally, we show that for
every formula ψ, ψ ∈ L(s) implies T , s |= ψ and

¬ψ ∈ L(s) implies T , s |= ¬ψ, where T is the model
corresponding to the tableau, s is a node marked as
satisfiable, and L(s) is its labelling.

The additional expansion rules are:

rel-awareness if Aiψ,Rij ∈ L(s), then create a suc-
cessor s ′ of s with L(s ′) = L(s) ∪ {Ajψ}

transitivity if Rij ,Rjk ∈ L(s), then create a succes-
sor s ′ of s with L(s ′) = L(s) ∪ {Rik}

full-awareness if Rij ,Ci ∈ L(s), then create a suc-
cessor s ′ of s with L(s ′) = L(s) ∪ {Cj }

Additional conditions for when a node is marked as
unsatisfiable are:

mark s as unsatisfiable if L(s) contains ¬Rii for any
i

mark s as unsatisfiable if L(s) contains Ci and ¬Aiψ
for any i and ψ.

Note that to store the node information in the ex-
tended language it is not enough to have a bit vector
of length 2|φ| to represent which of φ’s subformulae
or their negations are present, but we also need n|φ|
bits to represent extra formulas which may be added
by step rel-awareness, 2n2 bits for the formulas of
the form Rij added by transitivity and 2n for the
formulas of the form Ci which may be added by full-
awareness. However, the resulting space usage is still
polynomial in |φ| and n (or in |φ| if we are treating n
as a constant).

Finally, we need to show that if a node s is marked
as satisfiable, then we can construct awareness sets
A1(s), . . . ,An(s) so that for all formulas ψ ∈ Subf (φ)
of the form Aiγ,Ci ,Rij ,

ψ ∈ L(s) implies T , s |= ψ, and ¬ψ ∈ L(s) implies
T , s |= ¬ψ.

We construct Ai(s) essentially as in the proof of The-
orem 2. We use witness formulas ψ1, . . . , ψn which
are not in Subf (φ), and we set X 0

i (s) to be either
LC ,R,K ,X ,A

n (Φ) if Ci ∈ L(s), or the set of {γ : Aiγ ∈
L(s)} otherwise. At the step corresponding to agent
i , if Rik ,¬Rij ∈ L(s) then we add ψi to X i

k , for every
such k , and to X i

i . We set Ai(s) to be X n
i .

Now consider the three cases we have:

ψ = Aiγ. If Aiγ ∈ L(s), then γ ∈ Ai(s),so T , s |=
Aiγ. If ¬Aiγ ∈ L(s), then Ai(s) is not equal to
LC ,R,K ,X ,A

n (Φ) (because s is consistent, so Ci 
∈
L(s)) and Ai(s) does not contain γ (because again
due to consistency Aiγ 
∈ L(s)). So T , s |= ¬Aiγ.



ψ = Ci . If Ci ∈ L(s), then Ai(s) = LC ,R,K ,X ,A
n (Φ),

so T , s |= Ci . If ¬Ci ∈ L(s) then Ci 
∈ L(s), so
Ai(s) 
= LC ,R,K ,X ,A

n (Φ), so T , s |= ¬Ci .

ψ = Rij . Suppose by contradiction that Rij ∈ L(s)
and Ai(s) 
⊆ Aj (s). By construction and con-
sistency of s , Ai(s) and Aj (s) are not equal
to LC ,R,K ,X ,A

n (Φ). So the formula which is in
Ai(s) but not in Aj (s) is either some γ such that
Aiγ ∈ L(s), or one of the witness formulas. The
first case is excluded by the rel-awareness rule
which forces Ajγ ∈ L(s), hence in Aj (s). The
second case is excluded by the transitivity rule
and the way we add witnesses.

Let ¬Rij ∈ L(s). Then we added a witness ψi to
X i

i , which is not in Aj (s). So T , s |= ¬Rij .

�

7 Conclusions

We have pointed out that the full expressiveness of
unrestricted quantification is not needed to express
knowledge of unawareness in the motivating examples
of Halpern and Rêgo (2006), that quantification re-
stricted to full and relative awareness is sufficient, and
that the logic of full and relative awareness is decid-
able (in PSPACE), and we have presented a sound and
complete axiomatisation of that logic.

By negating full and relative awareness, we have seen
that we can express the fact that there is at least one
fact the agent is not aware of, and there is at least
one fact the agent is aware of and the other agent
is not aware of, respectively. This could possibly be
generalised to there is at least n, for arbitrary natural
numbers n. We studied such “at least n” operators in
(Ågotnes and Alechina, 2006), where we investigated
an epistemic language interpreted in purely syntactic
structures (Fagin et al., 1995), extended with an oper-
ator min(n) meaning that the agent explicitly knows
at least n formulae. Also, it would be interesting to
investigate variants of the logic by imposing restric-
tions on the awareness sets, such as awareness being
generated by primitive propositions (Halpern, 2001).
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soning about knowledge of unawareness. In Prin-
ciples of Knowledge Representation and Reasoning:
Proceedings of the Tenth International Conference
(KR’06), pages 6–13, Lake District, UK, June 2006.
AAAI.

Aviad Heifetz, Martin Meier, and Burkhard Schipper.
Interactive unawareness. Journal of Economic The-
ory, 2007. Forthcoming.

Salvatore Modica and Aldo Rustichini. Awareness and
partitional information structures. Theory and De-
cision, 37:107–124, 1994.

Salvatore Modica and Aldo Rustichini. Unawareness
and partitional information structures. Games and
Economic Behaviour, 27:265–298, 1999.

Giacomo Sillari. Models of awareness. In Gia-
como Bonanno, Wiebe van der Hoek, and Michael
Wooldridge, editors, Proceedings of The 7th Con-
ference on Logic and the Foundations of Game and
Decision Theory (LOFT), pages 209–218, July 2006.


