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Abstract—Despite the wide-spread popularity of estimation
of distribution algorithms (EDAs), there has been no theoretical
proof that there exist optimisation problems where EDAs
perform significantly better than traditional evolutionary algo-
rithms. Here, it is proved rigorously that on a problem called
SUBSTRING, a simple EDA called univariate marginal distri-
bution algorithm (UMDA) is efficient, whereas the (1+1) EA
is highly inefficient. Such studies are essential in gaining
insight into fundamental research issues, i.e., what problem
characteristics make an EDA or EA efficient, under what
conditions an EDA is expected to outperform an EA, and what
key factors are in an EDA that make it efficient or inefficient.

I. INTRODUCTION

Estimation of Distribution Algorithms (EDA) differ from
traditional evolutionary algorithms (EA) in the way offspring
individuals are produced from the selected parent individ-
uals. Instead of applying genetic operators like mutation
and crossover to the parents, EDAs estimate a probability
distribution over the search space based on how the parent
individuals are distributed in the search space, and then
sample the offspring individuals from this distribution [1].
Estimating the probability distribution can be significantly
more computationally expensive than applying the genetic
operators. It is therefore important to study what can be
gained from paying this additional computational cost. Sev-
eral experimental studies indicate that estimating a distribu-
tion has positive effects, however it is still not completely
understood why and how the estimated distribution benefit
the evolutionary search. It has been suggested that in certain
problem domains, for example in software test case genera-
tion [2], the estimated probability distribution could provide
the user of the EDA with additional information about the
problem structure. It has also been argued that the EDAs’ po-
tential in discovering problem structure, in particular problem
variable dependencies, can make the search more effective
and reduce the overall runtime [3]. However, these arguments
have until now been based on non-rigorous methods.

To better understand the situations where estimating a
probability distribution can significantly reduce the runtime
compared with traditional evolutionary algorithms, this pa-
per applies methods that have been developed over the
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last decade to analyse the runtime of randomised search
heuristics [4]. Droste et al [5] presented a number of well
known results about runtime of the (1+1) EA, and those on
linear functions and LEADINGONES [5] have been frequently
mentioned in the literature [4]. Some results have also
been obtained for the more complex evolutionary algorithms
that employ a population [6]. Additionally, results start to
emerge on the runtime of evolutionary algorithms on classical
combinatorial optimisation problem, for example the vertex
cover problem [7], [8], [9].

The runtime of EDAs is a much less explored area.
The runtime of a univariate EDA called compact genetic
algorithm (cGA) was analysed rigorously by Droste in [10].
Under certain conditions, the univariate distribution updated
by the cGA can become stuck, leading to an infinite runtime,
hence the expression for expected runtimes are conditional
on finite runtime. With this restriction, it was shown that the
expected runtime of cGA is in general bounded from below
by Ω(K

√
n) for any function. Here, K is a parameter of

the algorithm, often set to K = n, that adjusts the learning
rate of the algorithm. It was further shown that given a
parameter setting of K = n1/2+ε, (ε > 0 is a constant),
the algorithm optimises the linear function ONEMAX within
O(K

√
n) iterations, implying that ONEMAX is one of the

simplest functions for the cGA. On the other hand, it was
proved that there exists harder linear functions for the cGA,
notably the BINVAL function, which raises the asymptotic
runtime bound for the class of linear functions to Θ(Kn)
[10].

In a series of papers, Chen et al [11], [12], [13] have
analysed the runtime of another univariate EDA called the
univariate marginal distribution algorithm (UMDA) on sev-
eral non-linear problems. In contrast to the cGA, the UMDA
employs a population of individuals, where the parent and
offspring population sizes are specified by parameters N
and M , respectively. The initial analysis was made under
a “no-random-error” assumption, showing that the expected
runtime of UMDA on the LEADINGONES function is O(Nn)
[11]. Furthermore, it was proved that a variant of this
problem called TRAPLEADINGONES is hard for the UMDA.
However the “no-random-error” assumption does not hold in
practice. Improved techniques were therefore later developed
to lift this assumption, and proving that the runtime of
O(Nn) on the LEADINGONES function still holds [13]. This
and the following results hold when the population sizes are
sufficiently large, i.e. as in Theorem 2 in this paper.

As for the cGA, the probability distribution updated by the
traditional UMDA can under certain circumstances get stuck



at certain values. To alleviate for this problem, the univariate
distribution learned by the UMDA can be restricted in some
way. One such idea is the relaxation by margins, which
restricts the estimated marginal probabilities in the univariate
distribution to the interval [1/M, 1−1/M ]. It has been proved
that this modification can dramatically improve the runtime
on some fitness functions [13]. In particular, introducing
margins on the unimodal fitness function BVLEADINGONES
improves the runtime from infinite (with overwhelming prob-
ability), to O(Nn) (with overwhelming probability) [13].
Gonzáles has proved that using Laplace correction, which is a
similar but earlier idea, one can obtain a general exponential
upper bound on the expected runtime of several EDAs,
including UMDA on any fitness function [14]. On the other
hand, in recent work, it has been proved that the function
TRAPLEADINGONES remains hard for the UMDA, even
with relaxation by margins [12].

A comparison between the results above and the results
that have been obtained for the (1+1) EA appears un-
favourable for the cGA and the UMDA. It is well known
that the expected runtime of the (1+1) EA on ONEMAX is
Θ(n log n), and that the same runtime bound also holds for
the entire class of linear functions [5]. Hence, assuming the
parameter settings K = n1/2+ε (ε > 0 constant) considered
in [10], the (1+1) EA is asymptotically better than the cGA.
Even on the fitness function ONEMAX, which belongs to the
easiest functions for cGA, the cGA has asymptotically worse
expected runtime than (1+1) EA. The expected runtime of
(1+1) EA on LEADINGONES is Θ(n2) [5]. Currently, there
does not exist a lower bound on the runtime of UMDA on
LEADINGONES that matches the upper bound of O(Nn).
However, for the super-quadratic population sizes considered
above, even the duration of the first generation of UMDA is
asymptotically longer than the whole runtime of (1+1) EA
on LEADINGONES. It is currently an open problem whether
the cGA and the UMDA perform more favourably on these
functions for different parameter settings.

Our contribution is a rigorous runtime analysis of the
(1+1) EA and the UMDA on a problem called SUBSTRING
showing that the EDA is highly efficient on the problem
whereas the EA fails completely. This contribution is signif-
icant, because there exists no previous theoretical comparison
between the runtime of EAs and EDAs.

The rest of this paper is organised as follows. Section
II defines the SUBSTRING problem. Section III introduces
the analytical techniques that will be used. The runtime of
the algorithms is analysed in Section IV. Finally, Section V
concludes the paper.

II. THE SUBSTRING PROBLEM

We hypothesise that the UMDA and the (1+1) EA behave
differently on fitness functions where some variables do not
influence fitness. The intuition is that the marginal probability
distribution in UMDA only changes for variables that are
subject to selection, while the distribution remains (approx-
imately) constant for other variables. On the other hand,
the mutation operator in (1+1) EA will drive variables that

are not subject to selection towards a uniform distribution.
Hence, if the subset of variables subject to selection differs
within the search space, then the two algorithms might follow
different search trajectories.

To make this idea more precise, we construct the SUB-
STRING function. The formal definition of SUBSTRING
is presented in Definition 1 at the top of the next page.
The global optimum of SUBSTRING is 1n. The output of
SUBSTRING for a given search point (except the global
optimum), as illustrated in Figure 1, is essentially the position
of the rightmost occurrence of the substring 1αn, or the
number of leading 1-bits if no such substring exists. As a
consequence, for any search point (except the optimum), only
at most αn out of n variables determine the fitness of the
search point and thus are subject to selection. A non-optimal
search point can be improved by flipping the first 0-bit after
the rightmost substring 1αn, or the first 0-bit after the leading
1-bits if no substring 1αn exists. This improvement can be
likened to “moving” the substring 1αn from the left to the
right.

III. ANALYTICAL TOOLS

Before introducing the theoretical results in this paper,
we need to introduce some analytical tools which will be
utilised in the proofs. First we introduce some tail probability
techniques, among which Chernoff bounds might be the
most famous techniques in the community of theoretical
evolutionary computation:

Lemma 1 (Chernoff bounds [15]): Let X1, X2, . . . , Xk ∈
{0, 1} be k independent random identically distributed vari-
ables taking the value from {0, 1},

∀i 6= j : P(Xi = 1) = P(Xj = 1),

where i, j ∈ {1, . . . , k}. Let X be the sum of those random
variables, i.e., X =

∑k
i=1Xi, then we have

• ∀0 < δ < 1:

P
(
X < (1− δ)E[X]

)
< e−E[X]δ2/2.

• ∀δ ≤ 2e− 1:

P
(
X > (1 + δ)E[X]

)
< e−E[X]δ2/4.

In addition to Chernoff bounds, we borrow the following
lemma from the field of statistics:

Lemma 2 ([13], [16], [17]): 1 Consider sampling with-
out replacement from a finite population {X1, . . . , XN}
∈ {0, 1}N . Let {X1, . . . , XM} ∈ {0, 1}M be a sample of
size M drawn randomly without replacement from the whole
population, X(M) and X(N) be the sums of the random
variables in the sample and population respectively, i.e.,

1The first inequality of the lemma comes from Corollary 1.1 of [17] (or
a similar form can be found in [16]), and the second inequality comes from
Eq. 3.3 of [17]. They have been used to cope with the time complexity
analysis of EDAs in [13].



Definition 1 (SUBSTRING): For any constant α, 0 < α < 1/3, define

SUBSTRING(x) :=

(
2n if x = 1n;

max1≤i≤n i ·
Qi
j=max{i−αn,1} xj otherwise.

1
1
3 · n 2

3 · n n

αn

f(x)

x :=111110************************************************

αn

f(y)

y :=********************11111110**************************

Fig. 1. SUBSTRING evaluated on two search points x and y.

X(M) =
∑M
i=1Xi and X(N) =

∑N
i=1Xi, then we have:

P
(
X(M) − MX(N)

N
≥Mc

)
< e−2Mc2 ,

P
(∣∣∣∣X(M) − MX(N)

N

∣∣∣∣ > Mc

)
< 2e−2Mc2 ,

where c ∈ [0, 1] is some constant.
Finally, we will use the drift theorem [18], [19], which

is a general technique for proving exponential lower bounds
on the first hitting-time in Markov processes and which is
frequently applied in the analysis of evolutionary algorithms
[18], [20]. Here, we will use a simplified version of the
theorem developed by Oliveto and Witt [21]:

Lemma 3 (Simplified Drift Theorem [21]): Let Xt, t ≥ 0,
be the random variables describing a Markov process over
the state space S := {0, 1, ..., N}, and denote

∆(i) := (Xt+1 −Xt | Xt = i)

for i ∈ S and t ≥ 0. Suppose there exists an interval [a, b]
of the state space and three constants β, δ, r > 0 such that
for all t ≥ 0

1) E [∆(i)] ≥ β for a < i < b, and
2) P (∆(i) = −j) ≤ 1/(1 + δ)j−r for i > a and j ≥ 1,

then there is a constant c∗ > 0 such that for

T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds P

(
T ∗ ≤ 2c

∗(b−a)
)

= 2−Ω(b−a).

IV. THEORETICAL RESULTS

A. Runtime of (1+1) Evolutionary Algorithm

We will start by analysing the behaviour of the (1+1) EA
on SUBSTRING. We will first state the theoretical results.
Then we will outline the proof ideas and explain informally
why the SUBSTRING problem is hard for the (1+1) EA.
Finally, we will provide the formal proofs. The (1+1) EA
is defined below. Note that the mutation rate in this version
of the algorithm has been generalised to χ/n, where the

parameter χ has to satisfy χ/n = o(1), e.g. χ > 0 can be
any positive constant.

Algorithm 1 (1+1) Evolutionary Algorithm.
1: Sample x uniformly at random from {0, 1}n.
2: repeat
3: x′ ← x. Flip each bit of x′ with probability χ/n.
4: if f(x′) ≥ f(x) then
5: x← x′.
6: end if
7: until termination condition met.

Lemma 4 will be used when proving Theorem 1.
Lemma 4: Let A be any subset of {0, 1}n, and f :
{0, 1}n → R any pseudo-boolean function that for any
bitstring x ∈ A satisfies

f(x1 · · ·xi−1 · xi · xi+1 · · ·xn)
=f(x1 · · ·xi−1 · xi · xi+1 · · ·xn).

Let random variable Xt ∈ {0, 1}, t ≥ 0, denote the value
of the ith bit in the current search point in iteration t of
(1+1) EA with mutation probability satisfying χ/n = o(1)
and χ > 0. If the current search point belongs to set A for
any iteration 0 to t, then

E [|Xt −X0|] ≥ 1
1 + eχ

− 1
1 + eχ

·
(

1− χ(1 + e−χ)
n

)t
.

Proof: In order for the ith bit to be flipped, it suffices
that the mutation operator flips bit i, and no other bits, an
event which happens with probability higher than χ/neχ. In
order for the ith bit to be flipped, it is necessary that the
mutation operator flips at least bit i, an event which happens
with probability χ/n.

Define pt := P (|Xt −X0| = 1). Clearly, E [|Xt −X0|] =
pt. We then have p0 = 0, and pt+1 ≥ pt(1 − χ/n) + (1 −
pt)χ/neχ = pt(1− χ(1 + e−χ)/n) + χ/neχ for any t ≥ 0.
The lemma holds for iteration t = 1 because p1 = p0(1 −



χ(1+e−χ)/n)+χ/neχ = χ/neχ. Assuming that the lemma
also holds for t = k for a k ≥ 1, one can show that it must
also hold for t = k + 1

pk+1 ≥ pk ·
(

1− χ(1 + e−χ)
n

)
+

χ

neχ

≥ 1
1 + eχ

− 1
1 + eχ

·
(

1− χ(1 + e−χ)
n

)k+1

.

The lemma now follows by induction on iteration number t.

The main theoretical result in this section is the following
theorem.

Theorem 1: The probability that (1+1) EA with bitwise
mutation probability χ/n, for any constant χ > 0, finds the
global optimum of SUBSTRING in less than 2cn iterations is
e−Ω(n), where c > 0 is a constant.

We now explain the ideas of proving the above theorem.
Assume first the mutation rate parameter setting of χ = 1,
which corresponds to the traditional 1/n mutation rate in the
(1+1) EA. We call the position of the right-most occurrence
of the substring 1αn the substring position in a search point.
In order to reach the optimum, it is necessary to increase
the substring position to its maximum value, i.e. to obtain
a search point with the suffix 1αn. By the definition of the
fitness function and the acceptance criterion of the (1+1) EA,
the substring position increases monotonically. The substring
position can be increased by flipping the left-most 0-bit after
the substring position. Hence, the (1+1) EA will increase the
substring position in a similar manner to how the (1+1) EA
increases the fitness on LEADINGONES. However, in contrast
to LEADINGONES, as the substring position increases, it is
not necessary to maintain the initial leading 1-bits in the
search point. The (1+1) EA will therefore tend to “forget”
such acquired 1-bits. Lemma 4 shows how many such bits
that are forgotten in expectation as a function of time t.

The proof idea is to show that the time the (1+1) EA needs
to obtain a search point with maximal substring position is
so long that it also has lost many of the initial 1-bits. When a
search point with suffix 1αn has been found, many leading 1-
bits have been lost and it becomes difficult for the (1+1) EA
to obtain the globally optimal search point 1n because the
fitness function is essentially a needle in the haystack with
respect to the first n · (1 − α) bit-positions. One could
hypothesise that this problem could be alleviated, either by
reducing the mutation rate χ in order to lower the rate of
forgetting, or by increasing the mutation rate χ, in order to
reduce the time to reach the optimum. However, as is shown
in Theorem 1, lowering the mutation rate also increases the
time to increase the substring position, and as shown in
Lemma 4, increasing the mutation rate, also increases the rate
of forgetting. Based on the above discussions, we provide the
formal proof of Theorem 1.

Proof of Theorem 1: Define the substring position of
a search point x as the largest index p such that xp−εn =
xp−εn+1 = · · · = xp = 1. Having a substring position of
n is a necessary, but not sufficient, condition for the search

point to be optimal. In the following, the prefix of the current
search point corresponds to the first n/3 bits, and the suffix
corresponds to the last n/3 bits of the search point.

We divide any run of the (1+1) EA on SUBSTRING into
three phases depending on the current substring position p,
which by the definition of the fitness function is monoton-
ically increasing. Phase 1 starts with the initial iteration
and lasts until the substring position is higher than 2n/3.
A failure occurs in Phase 1 if the initial search point has
substring position higher than 2n/3. Phase 2 lasts as long
as the substring position is at least 2n/3 and less than n. A
failure occurs in Phase 2 if the phase ends with a search point
having less than n/(12(1+eχ)) 0-bits in the prefix. Phase 3
begins with a search point with substring position n and at
least n/(12(1 + eχ)) 0-bits in the prefix and lasts until the
optimum has been found. A failure occurs in Phase 3 if the
phase lasts less than 2cn iterations for some c. The theorem
follows if we can prove that the probability of failure in any
of the three phases is exponentially small.

By union bound, the failure probability in Phase 1 is less
than n2−αn = e−Ω(n). To bound the failure probability in
Phase 2, first note that by using the same arguments as in
the proof of Theorem 17 in Droste et al [5], it can be shown
that there exists a constant c1 such that the probability that
the duration of Phase 2 is shorter than c1n

2 iterations is
e−Ω(n). Given that the duration of Phase 2 is at least c1n2

with overwhelming probability, we are now in position to
bound the failure probability during Phase 2. The substring
position is at least 2n/3 during this phase, hence all the
bits in the prefix remain independent for the rest of the run.
For any index i, 1 ≤ i ≤ n/3, let random variable Yi,t ∈
{0, 1} be an indicator variable denoting whether the ith bit
in iteration t of Phase 2 is 0. In the most optimistic case,
Yi,0 = 0. Hence, by Lemma 4, the expected value of Yi,t,
where t ≥ c1n2 is the duration of Phase 2 is

E [Yi,t] ≥ 1
1 + eχ

− 1
1 + eχ

·
(

1− χ(1 + e−χ)
n

)c1n2

≥ 1
1 + eχ

− 1
1 + eχ

· exp(−Ω(n)).

Hence, for sufficiently large n, E [Yi,t] ≥ 1/(3(1 + eχ)).
Let random variable Y :=

∑n/3
i=1 Yi,t denote the number of

0-bits when Phase 2 ends. The expectation of Y is at least
n/(9(1 + eχ)), and by Chernoff bounds, the probability that
there are less than n/(12(1 + eχ), 0-bits in the prefix when
Phase 2 ends is e−Ω(n).

Finally, we bound the failure probability during Phase 3
using simplified drift analysis [21]. In order to obtain the
optimal search point, it is necessary that the prefix consists
of 1-bits only. Let the state i ∈ {0, ..., N} be the number of 0-
bits in the prefix, with N := n/3. Furthermore, define a := 0
and b := n/(12(1 + eχ)). The remaining part of the analysis
is now practically identical to the analysis of (1+1) EA on
NEEDLE in [21]. Assuming a < i < b, the expected drift
in the process is E [∆(i)] = χ((n/3 − i)/n − i/n) ≥ χ/6,
and condition 1 of the drift theorem holds with β = χ/6. In



order to decrease the number of 0-bits in the prefix by j, it
is necessary to flip j 0-bits simultaneously, an event which
happens with probability( n

12(1+eχ)
j

) · (χ/n)j ≤ (n/eχ)j

j!
· (χ/n)j

≤ 1/j! ≤ 2−j+1,

so condition 2 of the theorem holds with δ = r = 1.
Hence, the probability that the optimum has been found
within 2cn iterations, is bounded from above by e−Ω(n), for
some constant c.

Theorem 1 shows that the success probability of the
(1+1) EA on SUBSTRING is exponentially low, for any
mutation rate χ/n, assuming χ > 0 is a constant. This
means that even by restarting the algorithm, the SUBSTRING
problem remains hard for the (1+1) EA.

It is an open problem how a population-based EA will
behave on SUBSTRING. However, assuming that the algo-
rithm does not use crossover such that genetic material is
not transmitted between individuals, one can conjecture that
each individual in the population will suffer similar problems
to the (1+1) EA.

We will now show that the UMDA finds the solution to
SUBSTRING easily.

B. Runtime of UMDA with Truncation Selection

The UMDA concerned in this paper is shown in Table 2,
where we let x = (x1, x2, . . . , xn) ∈ {0, 1}n be an individual
(search point), ξt and ξ(s)

t be the populations before and after
the selection at the tth generation (t ∈ N+) respectively,
pt,i(1) (pt,i(0)) be the estimated marginal probability of the
ith bit of an individual to be 1 (0) at the tth generation, and
the indicators δ(xi|1) be defined as follows:

δ(xi|1) :=
{

1, xi = 1,
0, xi = 0.

Let Pt(x) :=
(
pt,1(x1), pt,2(x2), . . . , pt,n(xn)

)
, be a vector

made up of n random variables pt,1(x1), . . . , pt,n(xn).
For UMDA on SUBSTRING, the bits left of the substring

1αn will always take the value of 1, because by the time
UMDA has moved the substring one position to the right,
the marginal probability corresponding to the leftmost 1-bit
in the substring has converged to 1. On the basis of this
intuitive idea, we are able to obtain the following formal
result by theoretical analysis using Lemmas 1 and 2:

Theorem 2: Given any population sizes N =
ω(n2+β log n), M = ω(n2+β log n) (where β can be
any positive constant) and M = γN (γ ∈ (0, 1) is some
constant), the UMDA with truncation selection will spend
no more than τ generations to find the global optimum
of the SUBSTRING problem with a probability that is
super-polynomially close to 0, where

τ <
n
(

ln eM
N − ln(1− c)

)
ln(1− c) + ln

(
N
M

) + 2n

and c ∈ (max{0, 1 − 2M
N }, 1 − M

N ) is a constant. In other
words, the number of fitness evaluations of the UMDA on
SUBSTRING is O(nN) with an overwhelming probability.

Sketch of Proof: The proof idea for this theorem is very
similar to the one for Theorem 2 in our earlier paper [13].
For the sake of brevity, we only provide the sketch of the
proof. It is essential to carry out two major steps following
our approach described in [13]:

1) Build an easy-to-analyse discrete dynamic
system for the EDA. The idea is to de-
randomise the EDA and build a deterministic
dynamic system.

2) Analyse the deviations (errors) caused by de-
randomisation. Note that EDAs are stochastic
algorithms. Concretely, tail probability tech-
niques, such as Chernoff bounds, can be used
to bound the deviations.

Recently, the above approach has also be used to study
the time complexity of an improved version of UMDA on
a deceptive bi-modal problem [12]. Before introducing the
corresponding steps of the proof of this theorem, we have
to provide some notations. Let the i-convergence time Ti be
defined as follows (i ∈ {1, . . . , n}):

Ti := min{t; pt,i(x∗i ) = 1}.
Due to the stochastic nature of the UMDA, we know that
T1, . . . , Tn are all random variables. Moreover, we let T0 =
0. Given the tth generation (t ∈ N+), we say that it belongs
to the ith phase (i ∈ {1, . . . , n}) if and only if t satisfies
Ti−1 < t ≤ Ti. To carry out a worst-case analysis, we define
the deterministic updating rule for the ith phase as

P̂t+1(x∗) := γi(P̂t(x∗)) =
(
p̂t,1(x∗1), . . . , p̂t,i−1(x∗i−1),

[Gp̂t,i(x∗i )], Rp̂t,i+1(x∗i+1), . . . , Rp̂t,n(x∗n)
)
, (1)

where P̂t(x∗) represents the de-randomised probability vec-
tor of UMDA in the deterministic system, p̂t,1(x∗1), . . . ,
p̂t,n(x∗n) are its n components, and x∗ = (x∗1, . . . , x

∗
n) =

(1, . . . , 1) is the global optimum of the SUBSTRING problem.
In the above equation, we aim at dealing with three kinds of
situations:

1) j ∈ {1, . . . , i− 1} : In the deterministic system above,
the de-randomised marginal probabilities p̂t,j(x∗j ) have
converged to 1, thus at the next generation they will
not change.

2) j = i : In the deterministic system above, the
de-randomised marginal probability p̂t,i(x∗i ) is con-
verging, and we use the factor G = (1 − c)NM to
demonstrate the impact of selection pressure on this
converging marginal probability2, where N

M represents
the influence of the truncation selection operator which
preserves the M best individuals among the total N
individuals, and c ∈ (max{0, 1 − 2M

N }, 1 − M
N ) is

a constant parameter that controls the size of the

2“[ ]” in Eq. 1: given a > 1, [a] = 1; given a ∈ (0, 1), [a] = a.



Algorithm 2 Univariate Marginal Distribution Algorithm with Truncation Selection.
1: for i = 1 to n do
2: p0,i(xi)← 0.5.
3: end for
4: ξ1 ← N individuals are sampled according to the distribution p0(x) =

∏n
i=1 p0,i(xi).

5: repeat
6: ξ

(s)
t ← The best M individuals are selected from the N individuals in ξt (N > M ).

7: pt,i(1)←∑
x∈ξ(s)t

c(xi|1)/M, pt,i(0)← 1− pt,i(1) (∀i = 1, . . . , n).
8: ξt+1 ← N individuals are sampled according to the distribution pt(x) =

∏n
i=1 pt,i(xi).

9: until termination condition met.

deviation in the random sampling processes of the
UMDA.

3) j ∈ {i + 1, . . . , n} : In our worst-case analysis, at
the ith phase, we pessimistically consider that the jth

marginal probability p.,j(x∗j ) (j ∈ {i + 1, . . . , n})
will not be affected by the selection pressure. Hence,
we should take the genetic drift (the accumulation
of random errors) into account. The genetic drift is
possible to result in both increase and decrease of the
marginal probability p.,j(x∗j ), however, in our worst-
case analysis, we only consider the case that p.,j(x∗j ) is
consistently reduced by genetic drift. To demonstrate
the impact of genetic drift in the deterministic system,
we utilise the factor R = (1 − η)(1 − η′), where
η < 1 and η′ < 1 are positive functions (of the
problem size n) that controls the size of the deviation
in Simple Random Sampling without replacement3

when the truncation selection operator of the UMDA is
dealing with different individuals with the same fitness
(genetic drift).

On the other hand, since {γi}ni=1 de-randomises the whole
optimisation process, T1, . . . , Tn in the above equation are no
longer random variables. Consequently, we can define explic-
itly the deterministic system at the ith phase (i = 1, . . . , n)
as follows:

∀T̂i−1 < t ≤ T̂i :

P̂t(x∗) = γ
t−T̂i−1
i

(
P̂T̂i−1

(x∗)
)
,

where T̂i is formally defined as follows:

T̂i := min{t; p̂t,i(x∗i ) = 1}.
Given the definition of the deterministic system, it is not hard
to obtain the following upper bound for T̂i (i ∈ {1, . . . , n}):

T̂i ≤
i ln eM

N − i ln(1− c)
ln(1− c) + ln

(
N
M

) + 2i.

So far we have finished the first step of the approach
proposed in [13]. The rest part of the proof will concentrate
on estimate the deviation between the deterministic system
and the real optimisation process of the UMDA, and the

3The truncation selection operator cannot select an individual for more
than one time.

goal is to show that Tn ≤ T̂n holds with an overwhelming
probability (a probability that is super-polynomially close to
1). A feasible idea leading to the goal is by proving that
for any i ∈ {1, . . . , n}, Ti ≤ T̂i holds with an overwhelming
probability. The concrete implementation of the idea is using
mathematical induction.

First we must prove that
P
(
T1 ≤ T̂1 | p0,1(x∗1) = p̂0,1(x∗1)

)
is an overwhelming

probability by linking the value of T1 back to the values
of random variables pt,1(x∗1)). In this case, we need to
investigate the relation between pt,1(x∗1) and p̂t,1(x∗1).
More precisely, the probability that pt,1(x∗1) is bounded
from below by p̂t,1(x∗1) should be taken into account.
This can be carried out by Chernoff bounds, since the
random sampling processes of the UMDA (to generate
new solutions) can be considered as repeated Bernoulli
trials for a specific schemata. Noting that the outputs
of Chernoff bounds are in the form of the reciprocal of
an exponential function of the problem size n, we can
expect to obtain an overwhelming probability for the
event pt,1(x∗1) ≥ p̂t,1(x∗1) in consideration, given that
N = ω(n2+β log n) and 0 < t ≤ T̂1. On the other hand,
since T̂1 = Θ(1) is relatively small, given any positive
integer t that is no larger than T̂1 generations, the probability
of the event ∀t′ ≤ t, t ∈ N+ : pt′,1(x∗1) ≥ p̂t′,1(x∗1) remains
overwhelming (super-polynomially close to 1). As a
consequence, it is not hard to reach the result that
P
(
T1 ≤ T̂1 | p0,1(x∗1) = p̂0,1(x∗1)

)
is an overwhelming

probability.

The rest part of the induction is similar to the case of the
1st phase. However, there are still two differences to concern.
The first difference is that, when we are considering the ith

phase, we cannot ignore the genetic drift for the ith marginal
probability p.,i(x∗i ) before the ith phase. The difficulty of
coping with the genetic drift is that, we have to deal with
the random errors brought by the selection processes: let
us consider the case that the truncation selection operator
is facing a number of best but different individuals (some
different individuals are with the best fitness). The behaviour
of the truncation selection in this case is actually Simple
Random Sampling without replacement, and Lemma 2 can
deal with this situation. By noting that T̂1 < · · · < T̂n =
O(n), we know that applying Lemma 2 at most T̂n times



will still lead to an overwhelming probability (given the
conditions that the population sizes that N = ω(n2+β log n),
M = ω(n2+β log n) and M = γN ), while the marginal
probability p.,j(x∗j ) (j > i) will still be a constant at (0, 1)
with such overwhelming probability, no matter the value of
the problem size n.

Another difference comes from the possibility of gener-
ating a substring 1αn during the genetic drift, which will
stop the UMDA from performing under the “bound” of
the deterministic system. Fortunately, the probability of the
above event is exponentially close to 0, since we can apply
the total probability theorem on the basis of the facts that
α is a constant and the marginal probabilities under genetic
drift are all constants at (0, 1) within O(n) generations with
an overwhelming probability.

V. CONCLUSION

In this paper, we construct the SUBSTRING problem
on which a simple EDA called UMDA outperforms the
(1+1) EA significantly. It is the first time that a comparison
between an EA and an EDA has been carried out by means
of a runtime analysis. Nonetheless, we are not trying to
persuade readers that the UMDA is superior to the (1+1) EA.
Instead, the investigation aims at showing a problem charac-
teristic where UMDA can perform better, taking SUBSTRING
as an example. As we have mentioned, for non-optimal
search points of SUBSTRING, only a small subset of the
variables influence the fitness, and the remaining variables
are thus not subject to selection. However, for each variable,
there is a region of the search space in which the variable
influences the fitness. The marginal probability distribution
in UMDA only changes for variables that are subject to
selection, while remains constant for variables which have
already converged (i.e., the corresponding marginal proba-
bility has reached 0 or 1), but the (1+1) EA will always flip
the bits of search points and will thus “forget” the acquired
information given no selection pressure. Furthermore, it is
shown that on SUBSTRING, it is not helpful to lower the
rate of forgetting by lowering the bitwise mutation rate of
the (1+1) EA, because this also slows down the optimisation
process and thus gives the algorithm more time to forget.

However, given the fact that the marginal probabilities of
the UMDA can completely converge to 0 or 1, there is a
natural question whether the promising performance of the
UMDA on SUBSTRING only comes from this algorithmic
feature. To answer this question, we can “relax” the marginal
probabilities of the UMDA, and prevent the marginal prob-
abilities from converging, e.g. by means of relaxation by
margins [13] or Laplace correction. The corresponding in-
vestigation is left for future work.

In addition to the above issue, there are still a number
of investigations to be carried out in the future. First,
the analysis of the (1+1) EA on SUBSTRING should be
generalised to population-based EAs, which will lead to
fairer comparisons between EAs and UMDA, since UMDA
employs population while (1+1) EA does not. Second, we
need to extend the analysis of UMDAs to more complex

EDAs where the dependencies among variables are taken
into account.
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