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The most commonly used image magnification techniques are interpolation based:
nearest neighbor, bilinear, and bicubic. The drawbacks of these traditional meth-
ods are that images magnified by the simple nearest neighbor method often appear
“blocky,” while images magnified by linear and cubic interpolations usually appear
“blurry.” In this work, a new technique, which improves the performance of the tradi-
tional image magnification methods, is presented. We show how a differential image
pyramid is first constructed using traditional interpolation methods, then how a vec-
tor quantizer is designed using the pyramidal data. The vector quantizer is a look-up
table, termed the interresolution look-up table (IRLUT), which uses the lower reso-
lution image vector as input to find as its output the corresponding higher resolution
image vector. The improved image is produced by using the IRLUT’s outputs to
compensate for the image magnified by the traditional methods. Experimental re-
sults which show that images generated by the current method have sharper edges as
well as lower reconstruction mean-square errors than those produced by traditional
methods are presented.C© 2000 Academic Press

1. INTRODUCTION

Image magnification is widely used in many aspects of image processing; examples in-
clude pyramid coding [1], computer graphics [2], shape restoration [3], and video processing
[4]. The most commonly used techniques for image magnification are interpolation based.
The simplest technique is the nearest neighbor (zero order) interpolation [5]. However, the
magnified images produced by this technique often appear “blocky”; i.e., the pixels are
visible as large blocks. This undesired effect is more striking when the zooming factor is
high. Smooth images can be generated by using higher order interpolations. A commonly
used approach is the bilinear interpolation [5, 6], which linearly interpolates along each
row of the image, and then linearly interpolates the result along the column direction. Even
smoother images can be produced by using cubic spline interpolation [6–8]. However, these
methods smooth flat as well as edge areas; important visual features such as sharp edges
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and thin lines are smoothed over by the interpolations and the magnified images appear
“blurry.” Therefore, the results of these methods are often unsatisfactory.

Recently, researchers have proposed various improved algorithms for image magnifica-
tion. For example, Huang and Chen [2] proposed a hybrid interpolation filtering method,
Unseret al.[8] developed more accurate spline interpolation algorithms, Schultz and Steven-
son developed a Bayesian approach to image enlargement [9], and Jensen and Anastassiou
[10] used an edge fitting model to enlarge images. The main goal of these methods is to
preserve the visual integrity in detailed areas of the magnified image, because interpolations
blur the magnified image. To various extents, better results were reported by these authors.

This paper proposes a new method to improve the performance of traditional inter-
polation-based image magnification methods. Starting from a pyramidal model for multi-
resolution representation of an image, we observe the relationship of images at different
resolutions. From this model, a new technique for image magnification is proposed. The new
method introduces the concept of a compensation image, which is used to compensate
the components of the magnified image that are lost during the interpolation process. The
original contributions of this work also include the use of vector quantization to generate the
compensation image. We will provide experimental results to demonstrate the improvements
achieved by the proposed technique.

The rest of the paper is organized as follows. Section 2 will describe a pyramid model for
the multiresolution representation of images. The new technique for image magnification
based on the multiresolution image representation model is described in Section 3. The use
of vector quantization for the implementation of the new image magnification technique is
described in Section 4. Section 5 provides experimental results to demonstrate the effective-
ness of the new technique. Finally, some conclusions of the work are presented in Section 6.

2. MULTIRESOLUTION REPRESENTATION OF IMAGE

Multiresolution representation of an image is widely used in image processing and com-
puter vision. Amongst various schemes, pyramid structure is a popular form of multireso-
lution representation. To form a pyramid, an image is successively reduced in size through
downsampling. Depending on the application, the downsampling process usually involves
some form of filtering before subsampling the image. Figure 1 shows a three-level pyramid,

FIG. 1. A three-layer image pyramid; the higher level image is generated by downsampling the lower level
image by a factor of 2 in both dimensions.
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FIG. 2. A three-layer pyramid with difference images.

where the image is successively reduced in size by a factor of 2 in both dimensions. For
convenience, we will only consider the case of magnification by a zooming factor of 2k,
wherek is an integer.1

The downsampling (image reduction) process can also be implemented by interpolation
[11, 12]. The principle of image reduction and magnification has been discussed in many
textbooks; for example, readers can refer to the excellent books by Gonzalez and Woods
[11, Section 5.9] and Pratt [12, Chapter 14]. To keep the writing concise, we shall omit the
description of interpolation techniques for image reduction and enlargement.

The magnification process is the reverse operation of Fig. 1. For example, by magnifying
level 1 imageI1 by a factor of 2 in both dimensions, the magnified imageĨ 0 will be the same
size as level 0 imageI0. However, due to the loss of information during the downsizing
process, the magnified imageĨ 0 will not be identical to the original imageI0. To completely
representI0, we can useI1 and a difference image betweenI0 and Ĩ 0; the difference image
is calculated asL0= I0− Ĩ 0. Figure 2 shows how the difference images at different levels
are created.

An important observation of Fig. 2, which also motivates the development of the new
method, is as follows. For an image of some given resolution which is to be magnified, it can
always be assumed that the given image is obtained from an image of higher resolution by
some downsizing methods. In this work, it is assumed that the downsizing is implemented
using some form of interpolation.2 With reference to Fig. 2, assume the given image isI1,
which is to be magnified by a factor of 2 in both dimensions. Ideally, the magnified imageĨ 0

should be identical toI0, from whichI1 is generated. However, from the discussions above, it
is known that due to the lost of information in the process, there will be differences between
Ĩ 0 andI0. This difference provides a measure of how well a particular magnification method
performs: the larger the difference, the poorer the performance of the technique. Conversely,
the smaller the difference, the more accurate the magnification method. Therefore, in order
to magnify an image, the goal we should aim at is to reduce the difference betweenĨ 0 andI0.

From Figure 2,I0 can be exactly represented byĨ 0 andL0; i.e.,

I0 = Ĩ 0+ L0. (1)

1 It should be noted that although we study zooming factors of 2k in this paper, the technique developed here
could also be applied to other zooming factors as well.

2 Generally speaking, to obtain a lower resolution image, the higher resolution image is first low-pass-filtered
and then subsampled. The low-pass filtering is necessary to prevent aliasing, see [12].
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However, in practice,I0 is unknown, and thereforeL0 is unknown too. If an approximation
to L0, L̃0, can be found without the knowledge ofI0, then (1) can be approximated as

Î 0 = Ĩ 0+ L̃0. (2)

If L̃0 is chosen properly, then̂I 0 will be closer toI0 thanĨ 0 is, and therefore a more accurate
magnification of the image can be achieved using a traditional technique in combination
with an estimation of the difference imageL̃0 using (2). It is based on this rationale that a
new technique for improving the performance of traditional image magnification methods
is introduced. In the next section, we shall describe in detail this technique. The technique
used to obtaiñL0 is described in Section 4.

3. A NEW TECHNIQUE FOR IMAGE MAGNIFICATION BASED ON
MULTIRESOLUTION REPRESENTATION

Based on the principles discussed in Section 2, we now describe a new technique for
improving the performance of traditional image magnification methods. The schematic
diagram of the method is shown in Fig. 3. To keep the notations consistent, the image to
be magnified is denoted asI1. The input image is first magnified by a factor of 2 in both
directions using a traditional method to produceĨ 0, and at the same time, the input image
is reduced by the same technique to produceI2, which is again reduced toI3. I3 is then
magnified and subtracted fromI2 to createL2. I2 is also magnified and subtracted from the
input image to produceL1. Then,L1 andL2 are used to generate a look-up table. By using
table look-up, an estimation of the difference image,L̃0, is obtained. Finally, the improved
magnified image is obtained by summingĨ 0 andL̃0 together.

The rationale of the scheme in Fig. 3 is the assumption that there is an underlining
relationship between two adjacent levels of the image in the pyramid, and this relationship
is roughly the same for all levels. LetX be a 2m−1× 2n−1 array andY a 2m× 2n array. Let

FIG. 3. A new technique for improving image magnification.
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FIG. 4. Similar visual appearances of images at different resolutions.

9(X) be a function ofX, which mapsX to Y; i.e.,

Y = 9(X). (3)

By choosing the function9(X) properly,9(X) may be used to estimate an approximation
of a high-resolution image from a lower resolution image in Fig. 3,

L1 = 9(L2)+ ε1, (4)

whereε1 is the mapping error for level 1.
From Fig. 3, it can be seen that bothL1 and L2 are known, and the mapping function

9(X) can be estimated using these two images by solving

9 = arg min
∀9
‖L1−9(L2)‖, (5)

where‖· · ·‖ is the Euclidean norm.
Based on the assumption that there is an underlining relationship between two adjacent

levels of the image in the pyramid which is roughly the same for all levels,3 once9(X) has
been found, it can be used to estimateL̃0 as

L̃0 = 9(L1). (6)4

3 It is important to note that this assumption is informal; therefore we say the mapping relationship is roughly
the same for different levels. This informal assumption can be justified by viewing the pyramid images at different
levels. An example is shown in Fig. 4, where the visual appearances of these three levels of Laplacian images are
seen to be very similar. This is also confirmed by extensive simulation results presented in Section 5. However,
the exact mapping relationship will be resolution dependent, and may be impossible to find because of the lossy
nature in the downsampling process.

4 This equation does not imply the mapping relation fromL2 to L1 and that ofL1 to L0 are the same. It
only means the mapping9, found usingL2 and L1 according to (5), can be used toapproximatethe mapping
relationship fromL1 to L0; i.e., it does not mean the mapping relationship is resolution independent.
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In the next section we shall describe a method using vector quantization to implement the
mapping.

4. INTERRESOLUTION IMAGE PREDICTION BASED
ON VECTOR QUANTIZATION

4.1. The Interresolution Look-up Table (IRLUT)

From Section 3, it is clear that the mapping relation should be found usingL1 andL2.
A look-up table scheme is developed here to achieve this goal. We divide the images into
small blocks for mapping. LetXm+1(i, j ) be a 2k−1× 2l−1 block in Lm+1, Ym(i, j ) be a
2k× 2l block in Lm, andỸm(i, j ) be an approximation toYm(i, j ), wherei and j are the
co-ordinates of the blocks. The look-up table mapping, which we shall call a interresolution
look-up table, is illustrated in Fig. 5, where the encoder is a table ofN entries whose single
entry C2(n) is a 2k−1× 2l−1 array; the decoder is also a table ofN entries whose single
entryC1(n) is a 2k× 2l array.

There are two tables in this scheme; to follow the tradition of vector quantization [13], we
call them encoder and decoder respectively. In normal VQ, the encoder and decoder tables
are identical. In our application, both tables have the same number of codewords and there
is a one-to-one correspondence between the codewords in both tables; i.e.,C2(n) in the
encoder table andC1(n) in the decoder table are thenth corresponding pair of codewords.
However, the codeword in one table is different from its counterpart in another table; i.e.,
C1(n) 6=C2(n).

For a given 2k−1× 2l−1 block, Xm+1(i, j ) in Lm+1, there exists a corresponding 2k× 2l

block,Ym(i, j ) in Lm. EachXm+1(i, j ) is used to find an approximation toYm(i, j ), Ỹm(i, j )
using table look-up. The operation of the table look-up process is as follows. The input
Xm+1(i, j ) is first encoded into an indexn(i, j ) through minimum distance mapping; i.e.,
n(i, j ) is found by

∥∥Xm+1(i, j )− C2
(
n(i, j )

)∥∥ ≤ ‖Xm+1(i, j )− C2(l )‖, for all l = 1, 2, . . . , N. (7)

Thenn(i, j ) serves as an index for the output reproduction; i.e., an approximation toYm(i, j ),

FIG. 5. Interresolution look-up table.
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Ỹm(i, j ) is found as

Ỹm(i, j ) = C1
(
n(i, j )

)
. (8)

Once the codewords in both tables in Fig. 5 are specified, the operation of the mapping
process is completely described by (7) and (8). The remaining task, therefore, is to design
the two tables.

4.2. IRLUT Design Algorithm

To create IRLUT, the encoder codebook is first designed using samples fromL2. There
are many methods available for designing the codebook. One well-known method is the
generalized Lloyd algorithm (GLA), which is also known as the Linde–Buzo–Gray (LBG)
algorithm [13]. Recently, methods based on neural networks have become popular [14].
These algorithms have been well described elsewhere [13, 14]; readers not familiar with
VQ can consult the references. Once the encoder codebook,C2(1),C2(2), . . . ,C2(N), is
specified, the decoder codebook is decided as

C1(l ) = 1

|Sl |
∑

X2(i, j )∈Sl

Y1(i, j ), for all l = 1, 2, . . . , N, (9)

whereX2(i, j ) is a 2k−1× 2l−1 block in L2,Y1(i, j ) is the corresponding 2k× 2l block in
L1, Sl is a subset of 2k−1× 2l−1 array,|Sl | is the number ofX2(i, j ) in the subsetSl , and
X2(i, j )∈ Sl if

‖X2(i, j )− C2(l )‖ ≤ ‖X2(i, j )− C2(k)‖, for all k. (10)

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed technique, computer simulations have been
performed on many gray-level images. To provide some quantitative measures of the per-
formance of different image magnification methods, the image is first downsized and then
magnified back to its original size using different methods. In this way, the performance
of different techniques can be evaluated by calculating the difference between the original
signal and the magnified images. LettingIorg(i, j ) be the original image, andImag(i, j ) the
magnified image, mean square error (MSE) and signal-to-noise ratio (SNR) calculated as
follows are used to measure the performance of the magnification techniques

MSE= 1

M × N

M∑
i=1

N∑
j=1

(Iorg(i, j )− Imag(i, j )) (11)

SNR= 10 log

(
1

M×N

∑M
i=1

∑N
j=1 I 2

org(i, j )

MSE

)
dB, (12)

whereM andN are the dimensions of the original image.
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In the experiment, four different traditional methods for image reduction and expansion
are implemented, and the new method is used to improve the results of these traditional
techniques. The methods used are:

(1) Burt and Adelson’s Gaussian filter [1] witha= 0.4, the filter coefficients are
{0.05, 0.25, 0.4, 0.25, 0.05}.

(2) A wavelet filter pair [15]. The analysis low-pass filter used was a 9-tap filter:
{0.037828,−0.023849,−0.110624, 0377402, 0.852699, 0.377402,−0.110624,−0.023849,
0.037828}, and the low-pass synthesis filter used was a 7-tap filter:{−0.064539,−0.040689,
0.418092, 0.788468, 0.418092,−0.040689,−0.064539}.

(3) Bilinear interpolation [5].
(4) Bicubic interpolation [12].

The image is first reduced by a factor of 2 and 4 in both dimensions by these 4 different
methods respectively. The reduced image is then magnified back to its original resolution
by the same method used to reduce the image. For implementation convenience, reduction/
expansion factors of 4 are realized by reducing/expanding the image by a factor of 2 twice
in succession.

In implementing the new method, lower resolution images are divided into 2× 2 blocks,
and each is mapped to a 4× 4 block in its next higher resolution image. The choice of these
block sizes is for implementation convenience; other block sizes are possible.

Because the mapping is a few-to-many mapping, it is important to use enough data to
design the look-up table. Also, due to the added complexity of the new method, the look-
up table should be estimated offline. These two considerations can be resolved by using
many sample images to train the look-up table. In the results presented here four gray
scale images, Baboon, Boat, Lena, and Peppers as shown in Fig. 6 are used to design the

FIG. 6. Images used to train the look-up tables.
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TABLE I
Comparison of the MSE and SNR Performances of Gaussian Pyramid

Image Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512× 512 to 256× 256 and (512× 512 to 128× 128 and

256× 256 to 512× 512) 128× 128 to 512× 512

Original Original
Images method Improved method Improved

Detergent 200.9 156.9 424.9 364.5
(17.7 dB) (18.7 dB) (14.4 dB) (15.1 dB)

MRI 363.8 256.9 908.3 742.1
(14.8 dB) (16.4 dB) (10.9 dB) (11.7 dB)

Lena 79.5 52.8 238.8 160.5
(23.5 dB) (25.3 dB) (18.7 dB) (20.4 dB)

Baboon 325.9 286.9 491.6 462.5
(17.3 dB) (17.9 dB) (15.5 dB) (15.8 dB)

Note.The numbers inside the brackets are SNR values.

look-up table. The original sizes of these images are 512× 512 pixels. The mapping tables
are designed using the 128× 128 and 256× 256 difference images. One table is designed for
each of the four traditional methods. The number of entries in the tables is chosen to be 512.
Obviously, a larger table may provide better mapping accuracy, but will be computationally
more demanding; a smaller table will be computationally faster but may be less accurate.

Numerical results on four images, two inside the training set (Lena and Baboon) and
two outside the training set (MRI and Detergent) are shown in Tables I to IV. It should be
noted that for each method, only one interresolution look-up table, designed using data of
128× 128 and 256× 256 difference images of Fig. 6, is used to expand all images from

TABLE II
Comparison of the MSE and SNR Performances of Wavelet Image

Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512× 512 to 256× 256 and (512× 512 to 128× 128 and

256× 256 to 512× 512) 128× 128 to 512× 512

Original Original
Images method Improved method Improved

Detergent 137.6 124.1 383.0 338.1
(19.3 dB) (19.8 dB) (14.9 dB) (15.4 dB)

MRI 242.6 186.5 826.7 674.3
(16.6 dB) (17.7 dB) (11.3 dB) (12.3 dB)

Lena 56.2 37.9 215.0 133.5
(25.0 dB) (26.7 dB) (19.2 dB) (21.2 dB)

Baboon 262.8 254.7 496.4 444.1
(18.2 dB) (18.4 dB) (15.7 dB) (15.9 dB)

Note.The numbers inside the brackets are SNR values.
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TABLE III
Comparison of the MSE and SNR Performances of Bicubic Image

Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512× 512 to 256× 256 and (512× 512 to 128× 128 and

256× 256 to 512× 512) 128× 128 to 512× 512

Original Original
Images method Improved method Improved

Detergent 162.1 109.0 373.7 293.3
(18.6 dB) (20.3 dB) (14.9 dB) (16.0 dB)

MRI 250.2 163.1 710.9 538.4
(16.5 dB) (18.3 dB) (11.9 dB) (13.1 dB)

Lena 60.7 40.2 184.9 139.9
(24.6 dB) (26.4 dB) (19.8 dB) (21.0 dB)

Baboon 455.4 306.5 446.7 402.4
(15.8 dB) (17.6 dB) (15.9 dB) (16.4 dB)

Note.The numbers inside the brackets are SNR values.

256× 256 to 512× 512 and 128× 128 to 512× 512. From these results, it is seen the new
method has improved all the traditional methods for all the images and different factors of
expansion.

The new method not only improves the numerical results, it also improves the visual
sharpness of the expanded images. Some examples of the results are shown in Figs. 7 to 11.
Since the bilinear method provides consistently the best MSE performance for all the images
and factors, only images generated by this method and its improved versions are shown.
From these results, it is seen the new technique improves the sharpness of the magnified
images.

TABLE IV
Comparison of the MSE and SNR Performances of Bilinear Image

Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512× 512 to 256× 256 and (512× 512 to 128× 128 and

256× 256 to 512× 512) 128× 128 to 512× 512

Original Original
Images method Improved method Improved

Detergent 115.1 95.1 308.9 270.3
(20.1 dB) (20.9 dB) (15.8 dB) (16.4 dB)

MRI 167.5 135.2 565.6 480.4
(18.2 dB) (19.1 dB) (12.9 dB) (13.6 dB)

Lena 39.8 32.4 144.1 115.3
(26.5 dB) (27.4 dB) (20.9 dB) (21.9 dB)

Baboon 232.2 205.5 417.4 383.1
(18.8 dB) (19.3 dB) (16.2 dB) (16.6 dB)

Note.The numbers inside the brackets are SNR values.
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FIG. 7. MRI image reduced and then expanded by a factor of 2 (256× 256 to 128× 128 and 128× 128 to
256× 256). Top left: bilinear interpolation. Top right: Image improved by the new method. Bottom left: Difference
image of bilinear interpolation. Bottom right: Difference image of improved method.

FIG. 8. MRI image reduced and then expanded by a factor of 4 (512× 512 to 128× 128 and 128× 128 to
512× 512). Left: Bilinear interpolation. Right: Image improved by new method.



FIG. 9. Detergent image reduced and then expanded by a factor of 4 (512× 512 to 128× 128 and 128× 128
to 512× 512). Left: Bilinear interpolation. Right: Image improved by new method.

FIG. 10. Lena image reduced and then expanded by a factor of 4 (512× 512 to 128× 128 and 128× 128 to
512× 512). Left: Bilinear interpolation. Right: Image improved by new method.

FIG. 11. Baboon image reduced and then expanded by a factor of 4 (512× 512 to 128× 128 and 128× 128
to 512× 512). Left: Bilinear interpolation. Right: Image improved by new method.

371
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The new method can be used in combination with any previously known image magni-
fication method and similar improvements have been consistently observed.

6. CONCLUSIONS

In this paper, an improved image magnification scheme has been described. Simulation
results have been presented which show the new method improves the performance of
traditional magnification methods in terms of both better visual quality of the magnified
image and lower reconstruction error. The nice characteristic of the current method is that
it can be used in combination with any existing image magnification method to improve
its performance. Since many image processing packages implement at least one zooming
method, the technique developed in this work can be easily incorporated into existing
software packages. The important contribution of this work is the technique for improving
spatial magnification of images. Only one possible mapping method is studied in this paper.
Better mapping strategies may exist, and we are currently investigating in this direction.
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