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The most commonly used image magnification techniques are interpolation based:
nearest neighbor, bilinear, and bicubic. The drawbacks of these traditional meth-
ods are that images magnified by the simple nearest neighbor method often appear
“blocky,” while images magnified by linear and cubic interpolations usually appear
“blurry.” In this work, a new technique, which improves the performance of the tradi-
tional image magnification methods, is presented. We show how a differential image
pyramid is first constructed using traditional interpolation methods, then how a vec-
tor quantizer is designed using the pyramidal data. The vector quantizer is a look-up
table, termed the interresolution look-up table (IRLUT), which uses the lower reso-
lution image vector as input to find as its output the corresponding higher resolution
image vector. The improved image is produced by using the IRLUT’s outputs to
compensate for the image magnified by the traditional methods. Experimental re-
sults which show that images generated by the current method have sharper edges as
well as lower reconstruction mean-square errors than those produced by traditional
methods are presentea 2000 Academic Press

1. INTRODUCTION

Image maghnification is widely used in many aspects of image processing; example:
clude pyramid coding [1], computer graphics [2], shape restoration [3], and video proces:
[4]. The most commonly used techniques for image magnification are interpolation ba:
The simplest technique is the nearest neighbor (zero order) interpolation [5]. However,
magnified images produced by this technique often appear “blocky”; i.e., the pixels
visible as large blocks. This undesired effect is more striking when the zooming facto
high. Smooth images can be generated by using higher order interpolations. A comm
used approach is the bilinear interpolation [5, 6], which linearly interpolates along e:
row of the image, and then linearly interpolates the result along the column direction. E
smootherimages can be produced by using cubic spline interpolation [6—8]. However, tl
methods smooth flat as well as edge areas; important visual features such as sharp
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and thin lines are smoothed over by the interpolations and the magnified images ar
“blurry.” Therefore, the results of these methods are often unsatisfactory.

Recently, researchers have proposed various improved algorithms for image magn
tion. For example, Huang and Chen [2] proposed a hybrid interpolation filtering meth
Unseret al.[8] developed more accurate spline interpolation algorithms, Schultz and Stev
son developed a Bayesian approach to image enlargement [9], and Jensen and Anast
[10] used an edge fitting model to enlarge images. The main goal of these methods
preserve the visual integrity in detailed areas of the magnified image, because interpola
blur the magnified image. To various extents, better results were reported by these aut

This paper proposes a new method to improve the performance of traditional in
polation-based image magnification methods. Starting from a pyramidal model for mt
resolution representation of an image, we observe the relationship of images at diffe
resolutions. From this model, a new technique forimage magnification is proposed. The
method introduces the concept of a compensation image, which is used to compel
the components of the magnified image that are lost during the interpolation process.
original contributions of this work also include the use of vector quantization to generate
compensationimage. We will provide experimental results to demonstrate the improvem
achieved by the proposed technique.

The rest of the paper is organized as follows. Section 2 will describe a pyramid mode!
the multiresolution representation of images. The new technique for image magnifica
based on the multiresolution image representation model is described in Section 3. Th
of vector quantization for the implementation of the new image magnification techniqu
described in Section 4. Section 5 provides experimental results to demonstrate the effe
ness of the new technique. Finally, some conclusions of the work are presented in Secti

2. MULTIRESOLUTION REPRESENTATION OF IMAGE

Multiresolution representation of an image is widely used in image processing and ¢
puter vision. Amongst various schemes, pyramid structure is a popular form of multire
lution representation. To form a pyramid, an image is successively reduced in size thrc
downsampling. Depending on the application, the downsampling process usually invo
some form of filtering before subsampling the image. Figure 1 shows a three-level pyrai
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FIG. 1. Athree-layer image pyramid; the higher level image is generated by downsampling the lower le
image by a factor of 2 in both dimensions.
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FIG. 2. A three-layer pyramid with difference images.

where the image is successively reduced in size by a factor of 2 in both dimensions.
convenience, we will only consider the case of magnification by a zooming factdt of
wherek is an integet.

The downsampling (image reduction) process can also be implemented by interpole
[11, 12]. The principle of image reduction and magnification has been discussed in m
textbooks; for example, readers can refer to the excellent books by Gonzalez and W
[11, Section 5.9] and Pratt [12, Chapter 14]. To keep the writing concise, we shall omit
description of interpolation techniques for image reduction and enlargement.

The magnification process is the reverse operation of Fig. 1. For example, by magnify
level 1imagé; by a factor of 2 in both dimensions, the magnified imageill be the same
size as level 0 imagé,. However, due to the loss of information during the downsizing
process, the magnified imagigwill not be identical to the original imagle. To completely
representy, we can usé; and a difference image betwegyand I o the difference image
is calculated ag o= lg — I . Figure 2 shows how the difference images at different leve
are created.

An important observation of Fig. 2, which also motivates the development of the n
method, is as follows. For an image of some given resolution which is to be magnified, it
always be assumed that the given image is obtained from an image of higher resolutio
some downsizing methods. In this work, it is assumed that the downsizing is implemer
using some form of interpolatiochWith reference to Fig. 2, assume the given imagh is
which is to be magnified by a factor of 2 in both dimensions. Ideally, the magnified ingage
should be identical tty, from whichl; is generated. However, from the discussions above,
is known that due to the lost of information in the process, there will be differences betw:
I'oandlo. This difference provides a measure of how well a particular magnification meth
performs: the larger the difference, the poorer the performance of the technique. Conver
the smaller the difference, the more accurate the magnification method. Therefore, in
to magnify animage, the goal we should aim atis to reduce the difference beltyaeai .

From Figure 2o can be exactly represented byandL; i.e.,

lg = ro + Lo. (1)

1t should be noted that although we study zooming factors¢ah 2his paper, the technique developed here
could also be applied to other zooming factors as well.

2 Generally speaking, to obtain a lower resolution image, the higher resolution image is first low-pass-filte
and then subsampled. The low-pass filtering is necessary to prevent aliasing, see [12].
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However, in practicelg is unknown, and thereforey is unknown too. If an approximation
to Lo, Lo, can be found without the knowledge lef then (1) can be approximated as

I0=f0+ Eo. (2)

If Loischosen properly, thel?b will be closer tol thani o is, and therefore a more accurate
magnification of the image can be achieved using a traditional technique in combina
with an estimation of the difference imagg using (2). It is based on this rationale that 2
new technique for improving the performance of traditional image magnification meth
is introduced. In the next section, we shall describe in detail this technique. The techn
used to obtair ¢ is described in Section 4.

3. ANEW TECHNIQUE FOR IMAGE MAGNIFICATION BASED ON
MULTIRESOLUTION REPRESENTATION

Based on the principles discussed in Section 2, we now describe a new techniqu
improving the performance of traditional image magnification methods. The schem
diagram of the method is shown in Fig. 3. To keep the notations consistent, the imag
be magnified is denoted dg. The input image is first magnified by a factor of 2 in bott
directions using a traditional method to produgeand at the same time, the input image
is reduced by the same technique to produygevhich is again reduced thy. |3 is then
magnified and subtracted frolpto createl .. |, is also magnified and subtracted from the
input image to produck;. Then,L; andL, are used to generate a look-up table. By usin
table look-up, an estimation of the difference imaigg, is obtained. Finally, the improved
magnified image is obtained by summihgand L, together.

The rationale of the scheme in Fig. 3 is the assumption that there is an underlir
relationship between two adjacent levels of the image in the pyramid, and this relation:
is roughly the same for all levels. L&t be a 2"~ x 2"~ array andy a 2" x 2" array. Let

Look-up
Table

FIG. 3. A new technique for improving image magnification.



364 GUOPING QIU

FIG. 4. Similar visual appearances of images at different resolutions.

W (X) be a function ofX, which mapsX toY;i.e.,
Y = w(X). )

By choosing the functiod (X) properly,¥(X) may be used to estimate an approximatior
of a high-resolution image from a lower resolution image in Fig. 3,

Ly = W(Lo) + &1, (4)

whereg; is the mapping error for level 1.
From Fig. 3, it can be seen that bdth and L, are known, and the mapping function
W (X) can be estimated using these two images by solving

W =arg min|Ly — W(L)Il, (5)

where|- - || is the Euclidean norm.

Based on the assumption that there is an underlining relationship between two adja
levels of the image in the pyramid which is roughly the same for all Ievelsew (X) has
been found, it can be used to estimbteas

Lo = W(Ly). (6)*

31t is important to note that this assumption is informal; therefore we say the mapping relationship is roug
the same for different levels. This informal assumption can be justified by viewing the pyramid images at diffe
levels. An example is shown in Fig. 4, where the visual appearances of these three levels of Laplacian imag:
seen to be very similar. This is also confirmed by extensive simulation results presented in Section 5. How
the exact mapping relationship will be resolution dependent, and may be impossible to find because of the
nature in the downsampling process.

4This equation does not imply the mapping relation framto L; and that ofL; to Lo are the same. It
only means the mapping, found usingL, andL; according to (5), can be used approximatethe mapping
relationship fromL to Lo; i.e., it does not mean the mapping relationship is resolution independent.
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In the next section we shall describe a method using vector quantization to implement
mapping.

4. INTERRESOLUTION IMAGE PREDICTION BASED
ON VECTOR QUANTIZATION

4.1. The Interresolution Look-up Table (IRLUT)

From Section 3, it is clear that the mapping relation should be found wsiramnd L.

A look-up table scheme is developed here to achieve this goal. We divide the images
small blocks for mapping. LeXn41(i, j) be a 1 x 21 block in Lys1, Ym(, j) be a
2% x 2 block in Ly, and¥Ym(i, j) be an approximation t¥(i, j), wherei and j are the
co-ordinates of the blocks. The look-up table mapping, which we shall call a interresolu
look-up table, is illustrated in Fig. 5, where the encoder is a tabl efitries whose single
entry C,(n) is a 21 x 21 array; the decoder is also a table Mfentries whose single
entryCy(n) is a X x 2" array.

There are two tables in this scheme; to follow the tradition of vector quantization [13],
call them encoder and decoder respectively. In normal VQ, the encoder and decoder t
are identical. In our application, both tables have the same number of codewords and
is a one-to-one correspondence between the codewords in both tables;(in¢.in the
encoder table an@;(n) in the decoder table are tiih corresponding pair of codewords.
However, the codeword in one table is different from its counterpart in another table; i
Ca(n) # Ca(n).

For a given 81 x 2-1 block, Xm11(i, j) in Lmy1, there exists a correspondinty 2 2
block, Yim(i, j) in L. EachXm44(i, j) is used to find an approximation¥a(i, j), Ym(. j)
using table look-up. The operation of the table look-up process is as follows. The in
Xma(i, ) is first encoded into an index; jy through minimum distance mapping; i.e.,
NG, j) is found by

|| Xm+1(iv J) - CZ(n(IJ))H = ||Xm+l(i’ J) - C2(|)”’ foralll =1,2,..., N. (7)

Thenn; ;) serves as an index for the output reproduction; i.e., an approximatiGi(itoj ),

Encoder
Hon N[O [G@)] - [CW =m0,
Decoder
ne, —{[C] [c@] - [cm]—{Cin, ]

Ym(i’j) = Cl(”(i, j))

FIG. 5. Interresolution look-up table.
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Ym(, j) is found as
Y, j) = Ca(ng, j)- (8)

Once the codewords in both tables in Fig. 5 are specified, the operation of the map
process is completely described by (7) and (8). The remaining task, therefore, is to de
the two tables.

4.2. IRLUT Design Algorithm

To create IRLUT, the encoder codebook is first designed using sampled froflere
are many methods available for designing the codebook. One well-known method is
generalized Lloyd algorithm (GLA), which is also known as the Linde—Buzo—Gray (LBC
algorithm [13]. Recently, methods based on neural networks have become popular |
These algorithms have been well described elsewhere [13, 14]; readers not familiar
VQ can consult the references. Once the encoder codek®€k), Co(2), ..., Ca(N), is
specified, the decoder codebook is decided as

Cill) = — > (i), foralll =1.2,....N, (©)
IS {es

whereXy(i, j) is a 21 x 2-1 block in Ly, Yi(i, j) is the corresponding“2 2' block in
L1, S is a subset of 21 x 21 array,|S| is the number ofXy(i, j) in the subse§, and
Xo(i, ) e S if

1X2(i, j) — Ca)Il = 1 X2(i, J) — Ca(K)II,  forallk. (10)

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed technique, computer simulations have
performed on many gray-level images. To provide some quantitative measures of the
formance of different image magnification methods, the image is first downsized and t
magnified back to its original size using different methods. In this way, the performar
of different techniques can be evaluated by calculating the difference between the oric
signal and the magnified images. Lettihgy(i, j) be the original image, ankhadi, j) the
magnified image, mean square error (MSE) and signal-to-noise ratio (SNR) calculate
follows are used to measure the performance of the magnification techniques

1

N
i 2o 2ol 1) = Imag(i. 1)) (11)

i=1

ZI 12] =1 rg(ivj))dB’

Mz

MSE =

Il
a8

(12)

SNR= 10Iog( xN VISE

whereM andN are the dimensions of the original image.
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In the experiment, four different traditional methods for image reduction and expans
are implemented, and the new method is used to improve the results of these tradit
techniques. The methods used are:

(1) Burt and Adelson’'s Gaussian filter [1] with=0.4, the filter coefficients are
{0.05, 0.25, 0.4, 0.25, 0.5

(2) A wavelet filter pair [15]. The analysis low-pass filter used was a 9-tap filte
{0.037828;-0.023849,-0.110624,0377402,0.852699, 0.37746Q2,110624-0.023849,
0.037828, and the low-pass synthesis filter used was a 7-tap filte€:064539,-0.040689,
0.418092, 0.788468, 0.4180920.040689,—-0.064539.

(3) Bilinear interpolation [5].

(4) Bicubic interpolation [12].

The image is first reduced by a factor of 2 and 4 in both dimensions by these 4 diffel
methods respectively. The reduced image is then magnified back to its original resolt
by the same method used to reduce the image. For implementation convenience, redu
expansion factors of 4 are realized by reducing/expanding the image by a factor of 2 t
in succession.

In implementing the new method, lower resolution images are divided irta Blocks,
and each is mapped to a4 block in its next higher resolution image. The choice of thes
block sizes is for implementation convenience; other block sizes are possible.

Because the mapping is a few-to-many mapping, it is important to use enough da
design the look-up table. Also, due to the added complexity of the new method, the Ic
up table should be estimated offline. These two considerations can be resolved by t
many sample images to train the look-up table. In the results presented here four
scale images, Baboon, Boat, Lena, and Peppers as shown in Fig. 6 are used to desi

FIG. 6. Images used to train the look-up tables.
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TABLE |
Comparison of the MSE and SNR Performances of Gaussian Pyramid
Image Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512x 512 to 256x 256 and (51% 512to 128x 128 and
256x 256 to 512« 512) 128x 128 to 512« 512
Original Original
Images method Improved method Improved
Detergent 200.9 156.9 424.9 364.5
(17.7 dB) (18.7 dB) (14.4 dB) (15.1 dB)
MRI 363.8 256.9 908.3 742.1
(14.8 dB) (16.4 dB) (10.9.dB) (11.7 dB)
Lena 79.5 52.8 238.8 160.5
(23.5dB) (25.3dB) (18.7 dB) (20.4 dB)
Baboon 325.9 286.9 491.6 462.5
(17.3dB) (17.9dB) (15.5dB) (15.8 dB)

Note.The numbers inside the brackets are SNR values.

look-up table. The original sizes of these images arex6522 pixels. The mapping tables
are designed using the 128128 and 256« 256 difference images. One table is designed fo
each of the four traditional methods. The number of entries in the tables is chosen to be
Obviously, a larger table may provide better mapping accuracy, but will be computation:
more demanding; a smaller table will be computationally faster but may be less accurz
Numerical results on four images, two inside the training set (Lena and Baboon)
two outside the training set (MRI and Detergent) are shown in Tables | to IV. It should
noted that for each method, only one interresolution look-up table, designed using dat
128x 128 and 256« 256 difference images of Fig. 6, is used to expand all images fro

TABLE II
Comparison of the MSE and SNR Performances of Wavelet Image
Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512x 512 to 256x 256 and (51% 512to 128x 128 and
256 x 256 to 512x 512) 128x 128to 512x 512
Original Original
Images method Improved method Improved
Detergent 137.6 124.1 383.0 338.1
(19.3dB) (19.8 dB) (14.9 dB) (15.4 dB)
MRI 242.6 186.5 826.7 674.3
(16.6 dB) (17.7 dB) (11.3dB) (12.3dB)
Lena 56.2 37.9 215.0 133.5
(25.0dB) (26.7 dB) (19.2 dB) (21.2dB)
Baboon 262.8 254.7 496.4 444.1
(18.2 dB) (18.4 dB) (15.7 dB) (15.9 dB)

Note.The numbers inside the brackets are SNR values.
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TABLE III
Comparison of the MSE and SNR Performances of Bicubic Image
Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512x 512 to 256x 256 and (51% 512to 128x 128 and
256x 256 to 512« 512) 128x 128 to 512« 512
Original Original
Images method Improved method Improved
Detergent 162.1 109.0 373.7 293.3
(18.6 dB) (20.3dB) (14.9 dB) (16.0 dB)
MRI 250.2 163.1 710.9 538.4
(16.5 dB) (18.3dB) (11.9dB) (13.1dB)
Lena 60.7 40.2 184.9 139.9
(24.6 dB) (26.4 dB) (19.8 dB) (21.0dB)
Baboon 455.4 306.5 446.7 402.4
(15.8 dB) (17.6 dB) (15.9 dB) (16.4 dB)

Note.The numbers inside the brackets are SNR values.

256x 256 to 512x 512 and 128« 128 to 512x 512. From these results, it is seen the nev
method has improved all the traditional methods for all the images and different factor
expansion.

The new method not only improves the numerical results, it also improves the vis
sharpness of the expanded images. Some examples of the results are shown in Figs. 7
Since the bilinear method provides consistently the best MSE performance for all the im:
and factors, only images generated by this method and its improved versions are sh
From these results, it is seen the new technique improves the sharpness of the mag
images.

TABLE IV
Comparison of the MSE and SNR Performances of Bilinear Image
Expansion Method and the New Improved Method

Reduce/expansion factors

2 4
(512x 512 to 256x 256 and (51% 512to 128x 128 and
256 256 to 512x 512) 128x 128 to 512x 512
Original Original
Images method Improved method Improved
Detergent 1151 95.1 308.9 270.3
(20.1 dB) (20.9 dB) (15.8 dB) (16.4 dB)
MRI 167.5 135.2 565.6 480.4
(18.2 dB) (19.1 dB) (12.9 dB) (13.6 dB)
Lena 39.8 32.4 144.1 115.3
(26.5 dB) (27.4 dB) (20.9 dB) (21.9dB)
Baboon 232.2 205.5 417.4 383.1
(18.8 dB) (19.3dB) (16.2 dB) (16.6 dB)

Note.The numbers inside the brackets are SNR values.
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FIG. 7. MRI image reduced and then expanded by a factor of 2 {2866 to 128x< 128 and 128 128 to
256 x 256). Top left: bilinear interpolation. Top right: Image improved by the new method. Bottom left: Differenc
image of bilinear interpolation. Bottom right: Difference image of improved method.

FIG. 8. MRI image reduced and then expanded by a factor of 4 (c522 to 128« 128 and 128 128 to
512x 512). Left: Bilinear interpolation. Right: Image improved by new method.




FIG.9. Detergentimage reduced and then expanded by a factor of 4(512 to 128x 128 and 128« 128
to 512x 512). Left: Bilinear interpolation. Right: Image improved by new method.

FIG. 10. Lenaimage reduced and then expanded by a factor of 4X5l2 to 128« 128 and 128 128 to
512x 512). Left: Bilinear interpolation. Right: Image improved by new method.

FIG. 11. Baboon image reduced and then expanded by a factor of 4{512 to 128x 128 and 128 128
to 512x 512). Left: Bilinear interpolation. Right: Image improved by new method.

371
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The new method can be used in combination with any previously known image ma
fication method and similar improvements have been consistently observed.

6. CONCLUSIONS

In this paper, an improved image magnification scheme has been described. Simul:
results have been presented which show the new method improves the performan
traditional magnification methods in terms of both better visual quality of the magnifi
image and lower reconstruction error. The nice characteristic of the current method is
it can be used in combination with any existing image magnification method to imprc
its performance. Since many image processing packages implement at least one zoc
method, the technique developed in this work can be easily incorporated into exis
software packages. The important contribution of this work is the technique for improvi
spatial magnification of images. Only one possible mapping method is studied in this pa
Better mapping strategies may exist, and we are currently investigating in this directiol
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