
Towards inducing HTN domain models from examples (short paper)

N. E. Richardson, T. L. McCluskey, M. M. West
School of Computing and Engineering

Department of Informatics
The University of Huddersfield,
Huddersfield, HD1 3DH, UK

n.e.richardson@hud.ac.uk, t.l.mccluskey@hud.ac.uk, m.m.west@hud.ac.uk

Abstract

Domain modelling for AI Planning can be a complex process
especially if there is a large number of objects or actions or
both to be modelled. This task can be facilitated by tools
which induce operators or methods from examples. Further,
large and complex domains are more easily constructed if do-
main languages are used which allow for hierarchical decom-
position of domain components. Examples of such a decom-
position are object class hierarchies and method hierarchies.
This paper describes ongoing work which aims to produce
algorithms which learn effective hierarchical decompositions
from examples.

Introduction
Domain modelling is a complex, error prone process, espe-
cially when the model is complex. Capturing dynamics and
behaviour using operator structures (or compositions of op-
erators called methods) lies at the heart of constructing plan-
ning domains. One way to facilitate the process is to use
tools which induce operators or methods using task solu-
tions as training examples. In our previous work we have
shown how ‘flat’ domain operators can be induced from
examples. Operators can be induced using opmaker (Mc-
Cluskey, Richardson, & Simpson 2002) which has been em-
bedded interactively in GIPO (Simpson et al. 2001), (Simp-
son 2005). GIPO aids domain construction, offering editors,
validation tools, a graphical life-history editor and planning
tools. Output from GIPO is the completed and validated
domain being modelled in a variant of GIPO’s internal lan-
guage OCL (Liu & McCluskey 2000) or PDDL.

Large and complex domains are more easily constructed
if domain languages are used which allow for hierarchical
decomposition of domain components. This makes for a
richer language which more closely captures the real world
situations. Methods composed of hierarchical task networks
(HTN) make better sense of these worlds but are, however,
difficult to construct. We are working on an extension of
the induction process whereby operators are combined into
task networks. To illustrate the techniques we are using we
have created a hierarchical version of the familiar briefcase
domain. Below we briefly describe this work towards creat-
ing procedures which input training sequences and a partial
model containing object and class information, and outputs
an HTN domain model.

Hierarchical Domains
To illustrate our method we have created a version of the
familiar briecase world containing a simple structural hier-
archy of object ”sorts” shown in figure 1. The tree shows the
hierarchical sort structure with predicates attached at appro-
priate levels. For example inheritance in the sort tree means
that the state at carrier applies not only to carrier but to any
other sort below it on the tree. The converse does not work
so that goes in applies to box, lunch box and pencil box
only, and not to carrier or bag.

In the OCL language planning domains may be hierarchi-
cal in two ways. The language structures the objects to be
members of certain types called ‘sorts’. For example in the
hierarchical briefcase domain (HBC)
sorts(carrier,[bag,box]).
sorts(bag,[briefcase,suitcase]).
objects(briefcase,[bc1]).
objects(suitcase,[sc1]).

describes how bag (and box) are of sort ‘carrier’, whilst
briefcase is of sort ‘bag’ and ‘bc1’ is a specific object of
sort briefcase. The second example of the hierarchical na-
ture of domains involves the methods. Methods are con-
structed because the sequence of actions they perform need
to be packaged together for efficiency and/or effectiveness,
and hence they encapsulate domain heuristics. They can be
thought of as ‘mini-plans’ where a plan is a sequence of
actions to achieve the state changes from a specified initial
state to some predetermined goal state. Methods are struc-
tured into hierarchies so that some methods decompose into
others or decompose into both other methods and primitives
in order to complete their task. This structure in complex
domains can be quite extensive and it can be difficult to see
the interlacing of tasks.

Work in Progress
Using partial domain models we have been able to replicate
the GIPO-constructed operators and methods by induction
as follows. For each method in the GIPO-constructed do-
main we have compiled a file of example material including
the partial domain (containing an object class hierarchy) but
excluding all the operators and methods. For each notional
task the files each contain a solution in the form of a named
operator sequence, initial states for the objects involved and
numbered example material indicating the states after the

[at_carrier] carrier thing [at_thing]

lunch_box pencil_box briefcase suitcase

[goes_in]

[box_outside]

[box_in_bag]

box bag

[safe_in]

[fits_in]

[in_box]

[in_bag]

 place

(sorts)

Figure 1: The Sort-Tree Showing the Levels at which Predicates Apply

application of each operator. We can think of this as using a
linear plan to induce the operators and provide the decom-
position for the method. At this stage we are choosing ma-
terial for the example files carefully so that methods do not
overlap their tasks but with the aim of building method hier-
archies. opmaker, described in greater detail in (McCluskey,
Richardson, & Simpson 2002), induces operator headings
from those listed in the operator sequence and forms state
transitions. The left hand side of any induced transition
comes from either the list of initial states in the example
file or from the altered state of a previously induced oper-
ator. The right hand sides of the induced transitions come
from the numbered example inputs. (These can be null and
induce a prevail transition.)

The induction algorithm outputs, for each example
file, a set of instantiated operators and an HTN method
induced from the sequence. In each case only those
operators required for the methods we were replicating
were induced from each file. An example induced operator
put box in bag is as follows.

operator(put_box_in_bag(Bag,Place,Box),
%prevail
[se(bag,Bag,[at_carrier(Bag,Place)])],
%necessary
[sc(box,Box,[box_outside(Box),
at_carrier(Box,Place)] =>
[box_in_bag(Box,Bag),
at_carrier(Box,Place),
goes_in(Box,Bag)])],
%conditional
[sc(thing,Thing,[in_box(Thing,Box),
at_thing(Thing,Place)] =>
[in_box(Thing,Box),
at_thing(Thing,Place),
safe_in(Thing,Box)])]).

Here the operator header lists the sorts of objects involved

in the action and the prevail transition states that the bag
remains at the same place. The necessary transition states
that the box changes state from being outside the bag at a
place to being inside the bag at the same place. Finally the
conditional transition states that if a thing is in the box then
it also undergoes a state change - in this case it is still in the
box but the box is now in the bag.

A simple method operator induced is shown below.
The task network is composed of two induced operators
put in box and put box in bag.

method(pack_lunch(Sandwiches,Place,
Lunch_box,Bag),
% pre-condition
[],
% Index Transitions
[sc(thing,Sandwiches,
[outside(Sandwiches),
at_thing(Sandwiches,Place)]=>
[in_box(Sandwiches,Lunch_box),
at_thing(Sandwiches,Place)]),

sc(lunch_box,Lunch_box,
[box_outside(Lunch_box),
at_carrier(Lunch_box,Place)]=>
[box_in_bag(Lunch_box,Bag),
at_carrier(Lunch_box,Place)])],

% Static
[safe_in(Thing,Lunch_box),
goes_in(Lunch_box,Bag)],
% Temporal Constraints
[before(1,2)],
% Decomposition
[put_in_box(Box,Place,Thing),
put_box_in_bag(Bag,Place,Box)]).

This format allows for any preconditions to be listed and
the main transitions for the lunch box and sandwiches are
listed. The decomposition names the two operators of which
this method is composed and the temporal constraints name

the order in which they must be applied.
The new operators and methods have been compared to

the hand constructed set (using GIPO). Our initial results
show that the induced sets are accurate: when used with
GIPO’s planner and stepper tools we were able to complete
all the tasks previously declared for the domain. Preliminary
tests (with GIPO’s planner HyHTN) show that plans formed
using just induced operators run faster than those formed us-
ing both induced methods and operators but this may be be-
cause of the simplicity of the domains used. Further tests us-
ing more complex domains such as the Tyre World indicate
that as the tasks become more complex, inducing methods
as well as operators improves planning efficiency.

We hope to be able to demonstrate that planning is en-
hanced by the use of induced method hierarchies in our fu-
ture work. We aim to show that as methods are learned and
new methods are induced that utilise them, we can build in-
duced method hierarchies for more complex real world situ-
ations.

Related Work
In (Ilghami, Nau, & Munoz-Avila 2006) the hierarchical
domain learner (HDL) begins with an empty set of known
methods. By examining plan traces and forming these into
method decompositions HDL incrementally adds methods
on the basis that a new method is created from the plan
trace if its decomposition is different from those of other
methods previously added. Inputs to HDL include a set of
primitive operators and the plan traces. This differs from
our work which induces both operators and a method from
the example material, where the method decomposition is
the ordered set of primitives induced.

In the work of (Nejati, Langley, & Konik 2006) hierar-
chical task networks are learned by analysing expert traces.
They start from having a set of operators and a worked-out
problem solution which includes a specified sequence of
operators and thus differs from our system in having an
original operator set.

The argument for more complex, structured operators to
be used to model the difficulties faced when in real world
situations is well put by Levine and DeJong (Levine &
DeJong 2006). Their solution to the problem is similar
to ours and they introduce a system of automatically
constructing planning operators. The difference is that they
shield the planner from all but the necessary elements which
are visible to the planner.

In (Garland, Ryall, & Rich 2001) Garland Ryall and Rich
show, in their Collagen system, that learning task models
can be achieved by training examples and support from a
domain expert. Their work is similar to our approach in the
following ways:

� their ‘task models’ are similar to our HTN methods

� they show a complete recipe to achieve some task

� they show orderings of the steps to achieve the task

� they are developing a graphical user interface to aid con-
struction

� the orderings of the steps contain primitive and non-
primitive stages

� they list constraints that apply to the various steps

� user/expert guidance is required for the detail.

A more recent system that learns operators from examples
is ARMS (Wu, Yang, & Jiang 2005). This system learns
operator specifications without the need for user intervention
or a partial domain specification. However, it requires many
training examples containing valid solution sequences, and
presently it is only capable of inducing ”flat” operators.

References
Garland; Ryall; and Rich. 2001. Learning hierarchical task
models by defining and refining examples. In Proceedings
of the First International Conference on Knowledge Cap-
ture.
Ilghami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learning to do htn planning. In Proceedings of the Six-
teenth International Conference on Automated Planning
and Scheduling, 390 – 393.
Levine, G., and DeJong, G. 2006. Explanation-based ac-
quisition of planning operators. In Proceedings of the Six-
teenth International Conference on Automated Planning
and Scheduling, 152 – 161.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Department
of Computing and Mathematical Sciences, University of
Huddersfield .
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An Interactive Method for Inducing Operator De-
scriptions. In The Sixth International Conference on Artifi-
cial Intelligence Planning Systems.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hier-
archical task networks by observation. In ICML ’06: Pro-
ceedings of the 23rd international conference on Machine
learning, 665–672. New York, NY, USA: ACM Press.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett, R. S.;
and Doniat, C. 2001. GIPO: An Integrated Graphical Tool
to support Knowledge Engineering in AI Planning. In Pro-
ceedings of the 6th European Conference on Planning.
Simpson, R. M. 2005. Gipo graphical interface for plan-
ning with objects. In Proceedings of the International
Conference for Knowledge Engineering in Planning and
Scheduling.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

