
Resolution Theorem Proving

Based on lecture notes from Dr. Matthew Hyde, 2010

•First-Order Logic Recap

•Conjunctive normal form

•The Resolution algorithm

First Order Logic

• Predicate symbols

• Man (John), Woman(Mary), Student (John)

• Mother (Mary, John)

• Brother (Pete, John)

First Order Logic

• Logical Connectives

• OR: V
Man (John) V Woman(John)

• AND: Λ
Brother (Pete, John) Λ Brother (John, Pete)

• NOT: ¬
¬Mother(Pete, John)

• IMPLIES: =>
Mother(Mary, John) => Woman (Mary)

First Order Logic

• Exists

x Mother(x, John)

y Bird(y) Λ ¬Flies(y)

• For all

y King(y) => Man(y)

y Bird(y) => HasFeathers(y)

Inference in First Order Logic

• We can try to infer conclusions from the
statements that we already know

y King(y) Λ Greedy(y) => Evil(y)

 King(John)

 Greedy(John)

• Can we infer this?

 Evil(John)

Inference in First Order Logic

y King(y) Λ Greedy(y) => Evil(y)

 King(John)

 Greedy(John)

• We can infer “Evil(John)” if we use a unifier

 {y/John}

• This puts ‘John’ where there is a variable ‘y’

• The idea is to make two logical expressions
look the same

Inference in First Order Logic

 {y/John}

• The idea is to make two logical expressions
look the same

y King(y) Λ Greedy(y) => Evil(y)

 y King(John) Λ Greedy(John) => Evil(John)

 King(John)

 Greedy(John)

• We know: King(John) and Greedy(John) already

• So we can infer Evil(John)

Resolution in First Order Logic

• Resolution is one method for automated
theorem proving

• It is important to AI because it helps logical
agents to reason about the world

• It is one rule applied over and over

Resolution Algorithm

• Resolution proves new terms

– Input a database and a statement

– It negates the statement, adds that to the
database, and then finds a contradiction if one
exists

– If it finds a contradiction, then the negated
statement is false

– Therefore, the original statement must be true

Resolution Algorithm

Key Idea
• Proof by Contradiction

• Proof by Refutation

• Reductio ad Absurdum

– Literally: “reduction to an absurd thing”

Conjunctive Normal Form

• Resolution algorithm needs sentences in CNF

y King(y) Λ Greedy(y) => Evil(y)

 ¬King(y) v ¬ Greedy(y) v Evil(y)

• Resolution applies to clauses

• Converting a knowledge base to CNF is easily
automated

Resolution

• Applies one rule over and over to clauses

• Each pair that contains complementary
clauses is resolved

• We have a knowledge base

• We have a question

• The resolution algorithm proves the question
true or false

Resolution

• We want to prove that the set of clauses is
unsatisfiable

A and ¬A is unsatisfiable

Asleep(you) Λ ¬Asleep(you)

FirstClass(exam) Λ ¬FirstClass(exam)

x Example

• Unification: replace the variables with the
concrete instance

• x asleep(x) => fail(x)

– For all x, if x is asleep, x will fail

• asleep(you)

– You are asleep

• fail(you)?

– Will you fail?

x Example

• Convert first line to CNF

x asleep(x) => fail(x)

x ¬asleep(x) v fail(x)

¬asleep(x) v fail(x)

x Example

¬asleep(x) v fail(x)

asleep(you)

fail(you)?

• Negate the goal

• Terms resolve if there
is a set of
substitutions that
makes them the same.
The unifier.

¬asleep(x) v fail(x) asleep(you) ¬fail(you)

Unifier = {x/you}

¬asleep(you)

¬asleep(you) v fail(you) ¬fail(you)

Empty

Skolemisation

• The process of removing existential
quantifiers by elimination.

• x P(x) Skolemisation -> P(A), A: constant

Roadrunner

Beep
Beep!

Example - roadrunner

• Every coyote chases some
roadrunner

• No coyote catches any smart
roadrunner

• Any coyote who chases some
roadrunner but does not catch it is
frustrated

• All roadrunners are smart
• Question: Are all coyotes

frustrated?

Beep
Beep!

Example - roadrunner
Sentence Knowledge Base

Every coyote chases some roadrunner coyote(x) => rr(f(x))

coyote(x) => chases(x,f(x))

No coyote catches any smart roadrunner

coyote(x) Λ rr(y) Λ smart(y) =>
¬catches(x,y)

Any coyote who chases some roadrunner
but does not catch it is frustrated

coyote(x) Λ rr(y) Λ chases(x,y) Λ
¬catches(x,y) => frustrated(x)

All roadrunners are smart rr(x) => smart(x)

Question: Are all coyotes frustrated?
(does there exist one coyote that isn’t
frustrated? If not then we have a proof by
contradiction)

coyote(A)

¬frustrated(A)

Example - roadrunner
Sentence Knowledge Base

Every coyote chases some roadrunner ¬coyote(x) V rr(f(x))

¬coyote(x) V chases(x,f(x))

No coyote catches any smart roadrunner

¬coyote(x) V ¬rr(y) V ¬smart(y) V
¬catches(x,y)

Any coyote who chases some roadrunner
but does not catch it is frustrated

¬coyote(x) V ¬rr(y) V ¬chases(x,y)
V catches(x,y) V frustrated(x)

All roadrunners are smart ¬rr(x) V smart(x)

Question: Are all coyotes frustrated?
(does there exist one coyote that isn’t
frustrated? If not then we have a proof by
contradiction)

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

¬coyote(x) V rr(f(x))

¬coyote(x) V chases(x,f(x))

¬coyote(x) V ¬rr(y) V ¬smart(y) V ¬catches(x,y)

¬coyote(x) V ¬rr(y) V ¬chases(x,y) V catches(x,y) V frustrated(x)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

¬coyote(x) V rr(f(x))

¬coyote(x) V chases(x,f(x))

¬coyote(x) V ¬rr(y) V ¬smart(y) V ¬catches(x,y)

¬coyote(x) V ¬rr(y) V ¬chases(x,y) V catches(x,y) V frustrated(x)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Unifier = {x/A}

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬rr(y) V ¬smart(y) V ¬catches(A,y)

¬rr(y) V ¬chases(A,y) V catches(A,y) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Unifier = {x/A}

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬rr(y) V ¬smart(y) V ¬catches(A,y)

¬rr(y) V ¬chases(A,y) V catches(A,y) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Unifier = {y/f(A)}

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬rr(y) V ¬smart(y) V ¬catches(A,y)

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Unifier = {y/f(A)}
¬rr(f(A)) V ¬chases(A,f(A)) V catches(A,f(A)) V frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬rr(y) V ¬smart(y) V ¬catches(A,y)

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Unifier = {y/f(A)}
¬rr(f(A)) V ¬smart(f(A)) V ¬catches(A,f(A))

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬smart(f(A)) V ¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬smart(f(A)) V ¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

¬rr(x) V smart(x)

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬smart(f(A)) V ¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

smart(f(A))

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬smart(f(A)) V ¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

smart(f(A))

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

smart(f(A))

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬catches(A,f(A))

¬chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

smart(f(A))

coyote(A)

¬frustrated(A)

Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

¬catches(A,f(A))

frustrated(A) new!

smart(f(A))

coyote(A)

¬frustrated(A)

Contradiction!!

Example - roadrunner

frustrated(A) Λ ¬frustrated(A)

• This cannot be true, therefore our knowledge
base cannot be true

• Question: If all roadrunners are smart, then all
coyotes are frustrated?

• We added the opposite and proved it is not
true. We proved that there is NOT at least
ONE coyote that is NOT frustrated

• Therefore all coyotes are frustrated

Resolution Problems

• Can take a very long time

• Depending on the number of clauses in the knowledge
base

- L1: King(y) V Greedy(y) V Evil(y) (covert first line to
CNF)

- L2: King(John)

- L3: Greedy(John)

- L4: Evil(John) (negate the goal, add to knowledge base)

- L5:

What you need to know

• The steps to get a logic sentence into CNF

– Including Skolemisation

• The resolution algorithm

