Resolution Theorem Proving

*First-Order Logic Recap
*Conjunctive normal form
*The Resolution algorithm

Based on lecture notes from Dr. Matthew Hyde, 2010



First Order Logic

Predicate symbols

Man (John), Woman(Mary), Student (John)
Mother (Mary, John)

Brother (Pete, John)



First Order Logic

Logical Connectives
OR:V
Man (John) V Woman(John)

AND: A
Brother (Pete, John) A Brother (John, Pete)

NOT: -
-Mother(Pete, John)

IMPLIES: =>
Mother(Mary, John) => Woman (Mary)



First Order Logic

* Exists
dx Mother(x, John)
dy Bird(y) A =Flies(y)
* Forall ¥V
Vy King(y) => Man(y)
Vy Bird(y) => HasFeathers(y)



Inference in First Order Logic

 We can try to infer conclusions from the
statements that we already know

vy King(y) A Greedy(y) => Evil(y)
King(John)
Greedy(John)

e Can we infer this?
Evil(John)



Inference in First Order Logic

Vy King(y) A Greedy(y) => Evil(y)
King(John)
Greedy(John)

* We can infer “Evil(John)” if we use a unifier
{y/Jlohn}
* This puts John’ where there is a variable ‘y’

* The idea is to make two logical expressions
look the same



Inference in First Order Logic

{y/John}

* The idea is to make two logical expressions
look the same
vy King(y) A Greedy(y) => Evil(y)
Yy King(John) A Greedy(John) => Evil(John)
King(John)
Greedy(John)

 We know: King(John) and Greedy(John) already

* So we can infer Evil(John)



Resolution in First Order Logic

e Resolution is one method for automated
theorem proving

* |tis important to Al because it helps logical
agents to reason about the world

* |tis one rule applied over and over



Resolution Algorithm

* Resolution proves new terms
— Input a database and a statement

— It negates the statement, adds that to the
database, and then finds a contradiction if one
exists

— If it finds a contradiction, then the negated
statement is false

— Therefore, the original statement must be true



Resolution Algorithm

Key ldea

Proof by Contradiction
Proof by Refutation

Reductio ad Absurdum

— Literally: “reduction to an absurd thing”



Conjunctive Normal Form

e Resolution algorithm needs sentences in CNF
Yy King(y) A Greedy(y) => Evil(y)
-King(y) v - Greedy(y) v Evil(y)

* Resolution applies to clauses

* Converting a knowledge base to CNF is easily
automated



Resolution

Applies one rule over and over to clauses

Each pair that contains complementary
clauses is resolved

We have a knowledge base
We have a question

The resolution algorithm proves the question
true or false



Resolution

 We want to prove that the set of clauses is
unsatisfiable

A and -A is unsatisfiable
Asleep(you) N\ —Asleep(you)
FirstClass(exam) A =FirstClass(exam)



Vx Example

Unification: replace the variables with the
concrete instance

Vx asleep(x) => fail(x)

— For all x, if x is asleep, x will fail

asleep(you)

— You are asleep

fail(you)?

— Will you fail?



Vx Example

e Convert first line to CNF
Vx asleep(x) => fail(x)
Vx -asleep(x) v fail(x)
-asleep(x) v fail(x)



Vx Example

-asleep(x) v fail(x)
asleep(you)

—fail(you)

-asleep(x) v fail(x)

asleep(you)

fail(you)? /

* Negate the goal

e Terms resolve if there

is a set of
substitutions that

Unifier = {x/you}

—fail(you) || —asleep(you) v fail(you)

\

ﬂasle\ep(you)

makes them the same.

The unifier.




Skolemisation

Beep
* The process of removing existential Beep!
guantifiers by elimination.
e dxP(x) Skolemisation -> P(A), A: constant \

Roadrunner




Example - roadrunner

——

Every coyote chases some
roadrunner

No coyote catches any smart
roadrunner

Any coyote who chases some
roadrunner but does not catch it is
frustrated

All roadrunners are smart

Question: Are all coyotes
frustrated?



Example - roadrunner

Every coyote chases some roadrunner coyote(x) => rr(f(x))

coyote(x) => chases(x,f(x))

No coyote catches any smart roadrunner  coyote(x) A rr(y) A smart(y) =>

-~catches(x,y)
Any coyote who chases some roadrunner coyote(x) A rr(y) A chases(x,y) A
but does not catch it is frustrated ~catches(x,y) => frustrated(x)
All roadrunners are smart rr(x) => smart(x)
Question: Are all coyotes frustrated? coyote(A)

(does there exist one coyote that isn’t
frustrated? If not then we have a proof by
contradiction)

—frustrated(A)



Example - roadrunner

Every coyote chases some roadrunner —~coyote(x) V rr(f(x))
-~coyote(x) V chases(x,f(x))
No coyote catches any smart roadrunner  —coyote(x) V -rr(y) V -smart(y) V

-~catches(x,y)
Any coyote who chases some roadrunner -coyote(x) V -rr(y) V —chases(x,y)
but does not catch it is frustrated V catches(x,y) V frustrated(x)
All roadrunners are smart =rr(x) V smart(x)
Question: Are all coyotes frustrated? coyote(A)

(does there exist one coyote that isn’t
frustrated? If not then we have a proof by
contradiction)

—frustrated(A)



Example - roadrunner

Knowledge Base

—~coyote(x) V rr(f(x))

—~coyote(x) V chases(x,f(x))

-~coyote(x) V -rr(y) V -smart(y) V —catches(x,y)

—~coyote(x) V -rr(y) V —chases(x,y) V catches(x,y) V frustrated(x)
-rr(x) V smart(x)

coyote(A)

—~frustrated(A)



Example - roadrunner

Knowledge Base

—~coyote(x) V rr(f(x))

—~coyote(x) V chases(x,f(x))

—~coyote(x) V =rr(y) V -smart(y) V —catches(x,y)

—~coyote(x) V -rr(y) V —chases(x,y) V catches(x,y) V frustrated(x)
-rr(x) V smart(x)

coyote(A)

—~frustrated(A)

Unifier = {x/A}



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-rr(y) V -smart(y) V ~catches(A,y)

-rr(y) V —chases(A,y) V catches(A,y) V frustrated(A)

-rr(x) V smart(x)

coyote(A)
—~frustrated(A)

Unifier = {x/A}



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-rr(y) V -smart(y) V ~catches(A,y)

-rr(y) V -chases(A,y) V catches(A,y) V frustrated(A)

-rr(x) V smart(x)

coyote(A)
—~frustrated(A)

Unifier = {y/f(A)}



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-rr(y) V -smart(y) V —catches(A,y)
—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

=rr(x) V smart(x)

coyote(A)
—~frustrated(A)

Unifier = {y/f(A)}
-rr(f(A)) V —=chases(A,f(A)) V catches(A,f(A)) V frustrated(A)



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-rr(y) V -smart(y) V —catches(A,y)
—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

-rr(x) V smart(x)

coyote(A)
—~frustrated(A)

Unifier = {y/f(A)}
~rr(f(A)) V =smart(f(A)) V ~catches(A,f(A))



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-~smart(f(A)) V -catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

-rr(x) V smart(x)

coyote(A)
—~frustrated(A)



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-~smart(f(A)) V -catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)

=rr(x) V smart(x)

coyote(A)
—~frustrated(A)



Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-smart(f(A)) V —catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)
smart(f(A))

coyote(A)

—~frustrated(A)




Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-smart(f(A)) V —-catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)
smart(f(A))

coyote(A)

—~frustrated(A)




Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-~catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)
smart(f(A))

coyote(A)

—~frustrated(A)




Example - roadrunner

Knowledge Base

rr(f(A))

chases(A,f(A))

-~catches(A,f(A))

—~chases(A,f(A)) V catches(A, f(A)) V frustrated(A)
smart(f(A))

coyote(A)

—~frustrated(A)




Example - roadrunner

Knowledge Base

rr(f(A))
chases(A,f(A))
-~catches(A,f(A))

frustrated(A) new!
smart(f(A))
coyote(A)
—frustrated(A)

Contradiction!!



Example - roadrunner

frustrated(A) A -frustrated(A)

This cannot be true, therefore our knowledge
base cannot be true

Question: If all roadrunners are smart, then all
coyotes are frustrated?

We added the opposite and proved it is not
true. We proved that there is NOT at least
ONE coyote that is NOT frustrated

Therefore all coyotes are frustrated



Resolution Problems

Can take a very long time

Depending on the number of clauses in the knowledge
base

L1: King(y) V Greedy(y) V Evil(y) (covert first line to
CNF)

L2: King(John)
L3: Greedy(John)

L4: Evil(John) (negate the goal, add to knowledge base)
L5:



What you need to know

* The steps to get a logic sentence into CNF

— Including Skolemisation

* The resolution algorithm



