Artificial Intelligence Methods
(G52AIM)

Dr Rong Qu
rxq@cs.nott.ac.uk

Constructive Heuristic Methods
Constructive Heuristics – method

- Start from an “empty solution”
- Repeatedly, extend the current solution until a complete solution is constructed
- Use heuristics to try to extend in such a way that the final solution is a good one

Some of the slides in this part are based on Dr Parkes’ previous teaching materials. See “Constructive Heuristic Methods” at http://www.cs.nott.ac.uk/~ajp/courses/g52aim/.
Constructive Heuristics – method

It is essential to know the difference between:

- Constructive methods
 - Extend empty solution until get complete solution
- Local search
 - Take complete solution and try to improve it via local moves
Constructive Heuristics for TSP

- Start: Pick a start city but an empty path
- Repeatedly:
 - Extend the path by adding an edge to an unvisited city selected using a heuristic choice
- Until no more unvisited cities, then close the path to give a tour
Constructive Heuristics for TSP

- Heuristics
 - Nearest Neighbour (NN) Heuristic
 - Pick the next city which is the nearest unvisited city
 - Any other good heuristics?
 - Online demo

- NN from A
 - A-D-B-C-A = 1+1+7+3=12

- A-C-D-B-A = 3+2+1+4 = 10
 - Optimal?
Constructive Heuristics for GC

- Graph colouring
 - Given a graph $G(V, E)$, assign colours to vertices
 - Constraint
 - Adjacent vertices cannot be coloured the same
 - Objective
 - Minimize: the number of colours to the graph
Constructive Heuristics for GC

- **Heuristics**
 - Largest degree
 - Pick the vertices with the largest degree
 - Most Constraining
 - Saturation degree
 - Pick vertices with the fewest remaining colours
 - Most Constrained
 - Any other good heuristics?
Constructive Heuristics

- Putting this into the context of depth first search in G51IAI*
 - At each choice suppose that branches are ordered left-to-right by the heuristic, with the preferred option on left
 - Standard one-shot construction is just to take one branch of the search tree

* You should be familiar with the blind search methods in G51IAI
Constructive Heuristics

- Putting this into the context of depth first search in G51IAI*
 - To avoid mistakes in picking the "wrong" branches, heuristics can help to pick branches which lead to relatively good solutions

* You should be familiar with the blind search methods in G51IAI
Heuristics

- Variable selection
 - Which variable to work on
 - In GC: which vertex to colour

- Value selection
 - Which value to assign
 - In GC: assign which colour to the chosen vertex
Heuristics

- **Variable selection**
 - Most constrained
 - In GC: largest degree

- **Value selection**
 - Least constraining: imposes fewest constraints on remainder of problem
 - In GC: which colour leaves the most colours to the remaining vertices
Constructive Heuristics

- Generally give better answers than random methods
- Very quick, but usually far from optimal
- Widely used with other methods
- Often used as initialization for meta-heuristics
 - Pick the best solution from several runs
Constructive Heuristics - hybridize

- As initialization for local search
 - Pick the best solution from several runs

- Hybridized with other meta-heuristics
 - With local search: GRASP, etc
 - With Genetic algorithms: Memetic algorithms
Constructive Heuristics - hybridize

- GRASP
 - Greedy Randomized Adaptive Search Procedure
 - Hybrid of
 - Constructive methods
 - Randomized & adaptive
 - Local search
 - Pick your favourite
Constructive Heuristics - hybridize

- GRASP

Loop
 Create a solution, s, using randomized constructor g utilizing RCL
 Improve s using a local search
End loop
Constructive Heuristics - hybridize

- **GRASP**
 - Main idea of “Restricted candidate list” (RCL)
 - At each iteration, within randomized constructor g
 1. Use heuristic to select a limited number of good solution components; the RCL
 2. Randomly select a choice from the RCL
 3. Use this in order to extend the current partial assignment
Constructive Heuristics - hybridize

- **GRASP**
 - Main idea of “Restricted candidate list” (RCL)
 - Size of RCL r
 - If r is too big, then g becomes random
 - If r is 1, then g becomes pure greedy heuristic
 - Typical size of RCL is 3~5, but maybe problem dependent
Learning Objectives

- Know the general idea of constructive heuristics
- Know GRASP – so you could apply them in your coursework if you had to 😊