Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu History of Al

Predictions in Al History

- ► AI
 - Originated in 1956, John McCarthy coined the term
 - very successful at early stage
- Within 10 years a computer will be a chess champion"
 - Herbert Simon, 1957
 - IBM Deep Blue on 11 May 1997

Predictions in Al History

Conversion from Russian to English

- National Research Council, 1950s'
- One example
 - "The spirit is willing but the flesh is weak" produced
 "The vodka is good but the meat is rotten"
- Machine translations
 - Rendering the text from one language to another
 - Literal translation vs. free translation
 - Requires knowledge to establish content
 - Long way to go?

Why do we need Al anyway?

The Travelling Salesman Problem

- A salesperson has to visit a number of cities
 - (S)He can start at any city and must finish at that same city
 - The salesperson must visit each city only once

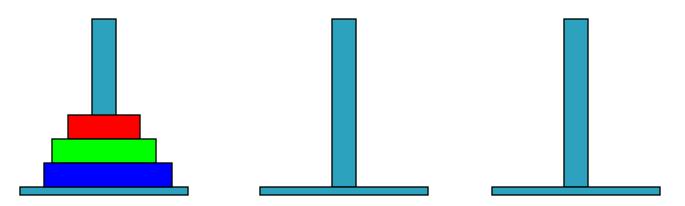
The number of possible routes is ??

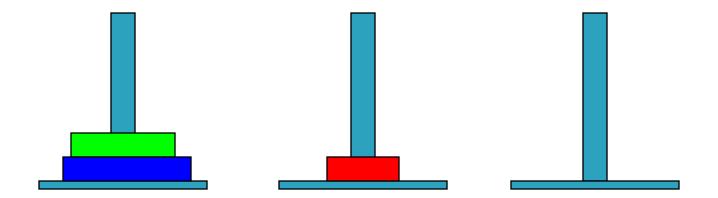
The Travelling Salesman Problem

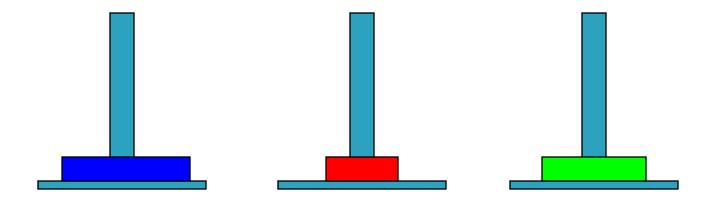
- Solving the TSP means finding the minimum cost solution
 - Given a set of cities and distances between them
 - Find the optimal tour, i.e. the shortest possible such tour

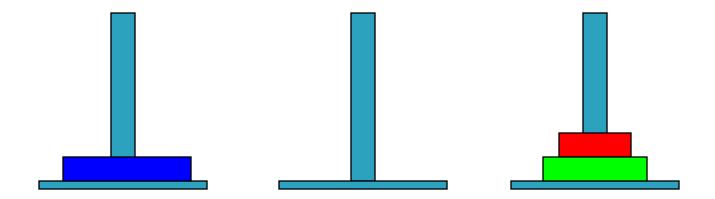
A 10 city TSP has 181,000 possible solutions

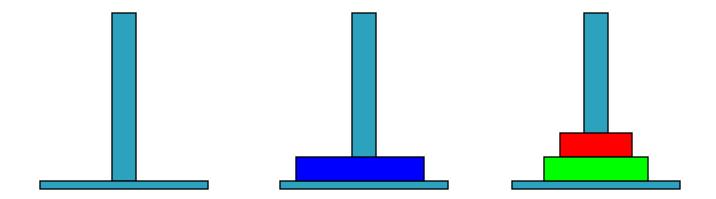
A 20 city TSP has 10,000,000,000,000 possible solutions

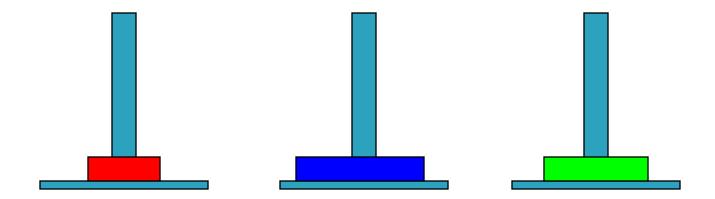

There are 1,000,000,000,000,000,000 litres of water on the planet*

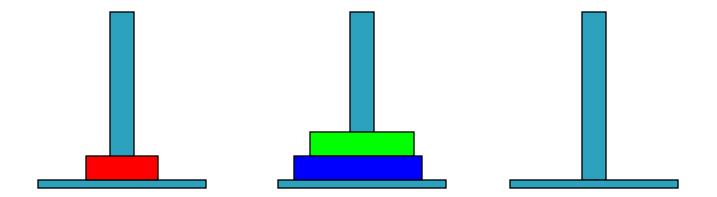

*Mchalewicz, Z, Evolutionary Algorithms for Constrained Optimization Problems, CEC 2000 (Tutorial)

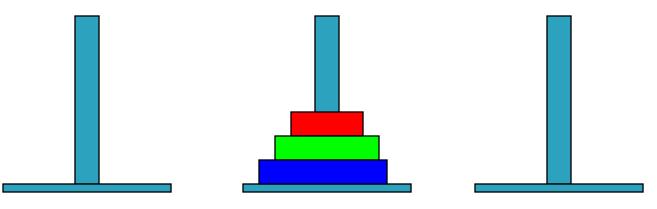

A 50 City TSP has 1.52 * 10⁶⁴ possible solutions A 10GHz computer might do 10⁹ tours per second Running since start of universe, it would still only have done 10²⁶ tours Not even close to evaluating all tours!

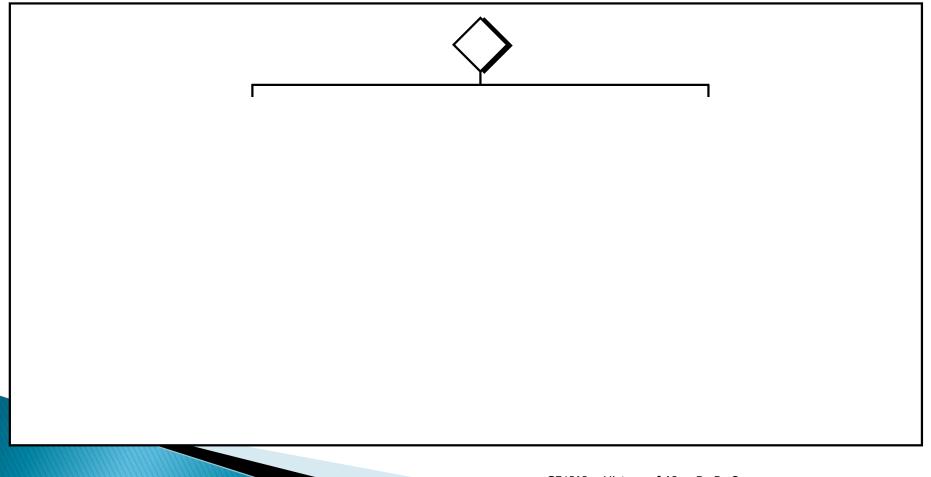

One of the major unsolved theoretical problems in Computer Science

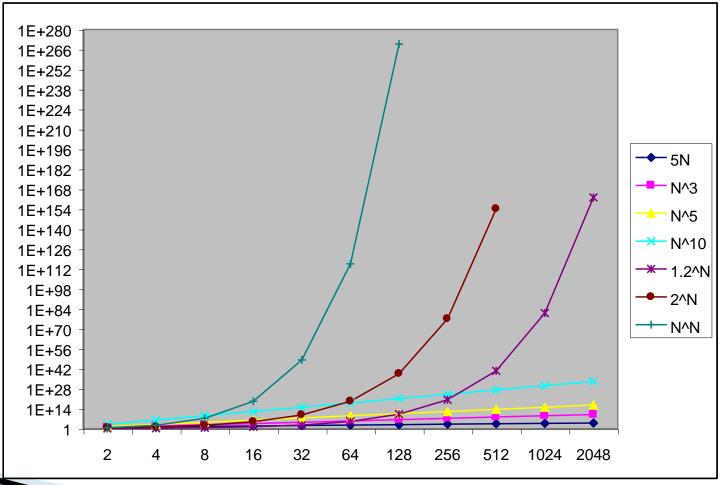

The original problem was stated that a group of Tibetan monks had to move 64 gold rings which were placed on diamond pegs








The original problem was stated that a group of Tibetan monks had to move 64 gold rings which were placed on diamond pegs


- When they finished this task the world would end
- Assume they could move one ring every second (or more realistically every five seconds)
- How long till the end of the world?

- It would require 3 trillion years!
- Using a computer we could do many more moves than one second, so go and try implementing the 64 rings towers of Hanoi problem
- If you are still alive at the end, try 1,000 rings!!!!

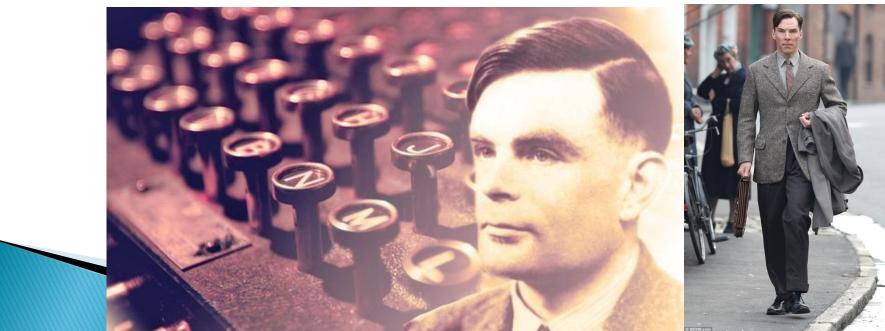
- Optimize f(x₁, x₂,..., x₁₀₀)
 - where f is complex and x_i takes value of 0 or 1
 - The size of the search space is $? \approx 10^{30}$
- An exhaustive search is not an option
 - At 1,000 evaluations per second
 - Start the algorithm at the time the universe was created
 - As of now we would have considered just 1% of all possible solutions

Number of possible solutions

Size of problems

the feature where the number of problem solutions grows **exponentially** with its size

Running on a computer capable of 1 million instructions/second


	10	20	50	100	200
N ²	1/10,000 second	1/2500 second	1/400 second	1/100 second	1/25 second
N^5	1/10 second	3.2 seconds	5.2 minutes	2.8 hours	3.7 days
2 ^N	1/1000 second	1 second	35.7 years	> 400 trillion centuries	45 digit no. of centuries
N ^N	2.8 hours	3.3 trillion years	70 digit no. of centuries	185 digit no. of centuries	445 digit no. of centuries

Harel, D. 2000. Computer Ltd. : What they really can't do, Oxford University Press

Alan Turing

- Founder of computer science, mathematician, philosopher and code breaker
- Father of modern computer science

Turing test

Alan Turing

- 1912 (23 June): Birth, Paddington, London
- 1931–34: Undergraduate at King's College, Cambridge University
- 1935: Elected fellow of King's College, Cambridge
- 1936: The Turing machine: On Computable Numbers Submitted
- 1936-38: At Princeton University. Ph.D. Papers in logic, algebra, number theory
- 1938–39: Return to Cambridge

Alan Turing

- 1939-40 Devises the Bombe, machine for Enigma decryption
- 1947-48: Papers on programming, neural nets, and prospects for artificial intelligence
- 1948: Manchester University
- 1950: Philosophical paper on machine intelligence: the Turing Test
- 1954 (7 June): Death by cyanide poisoning, Wilmslow, Cheshire

- An interrogator is connected to a person and a machine via a terminal of some kind and cannot see either the person or machine.
- The interrogator's task is to find out which of the two candidates is the machine, and which is human, only by asking them questions
- If the machine can fool the interrogator 30% of the time, the machine is considered intelligent

- Proposed by Alan Turing in 1950
 - Turing, A.M. 1950. "Computing Machinery and Intelligence." Mind LIX, no. 2236, 1950 : 433-460
 - <u>http://www.loebner.net/Prizef/TuringArticle.html</u>
- If the Turing Test was passed Turing would conclude that the machine was intelligent
 - The ELIZA program and Internet chatbot MGONZ have fooled humans
 - The A.L.I.C.E. program fooled one judge in the 2001 Loebner Prize Competition
- Suggested as a way of saying when we could consider machines to be intelligent

Question : "What is 35,076 divided by 4,567?"

Answer : ????

Answer: 7.6803153

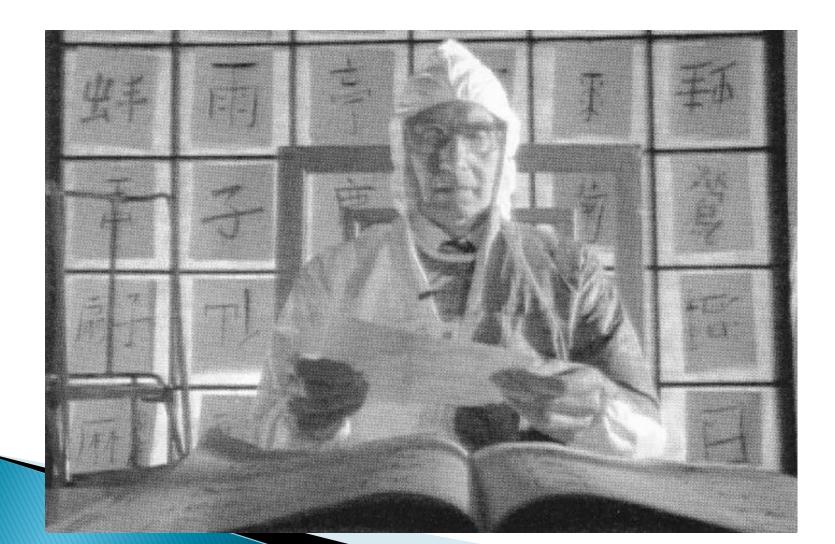
http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

- You're on the internet chatting to two others "A" and "B"
 - one is a person
 - one is a machine trying to imitate a person (e.g. capable of discussing the X-factor?)
- If you can't tell the difference
 - then the machine must be intelligent
 - Or at least act intelligent?

- The computer needs (at least) the following capabilities:
 - Knowledge representation
 - Automated reasoning
 - Machine learning
 - Computer vision
 - Robotics

- Does this test show intelligence?
 - How about the person doesn't know x-factor
 - If the person doesn't speak English?
- Is this test about
 - Behaviour

or


- Intelligence
- Provides a satisfactory operational definition of intelligence

The Chinese Room Experiment

- In 1980 John Searle devised a thought experiment which he called the Chinese Room
 - *Searle, J.R. 1980. Minds, brains and programs.
 Behavioural and Brain Sciences, 3: 417-457, 1980
 - Behaving intelligently was not enough to prove a computer was intelligent

*http://members.aol.com/NeoNoetics/MindsBrainsPrograms.html

The Chinese Room Experiment

The Chinese Room Experiment

- Simple Rule processing system
 - in which the "rule processor" happens to be intelligent
 - but has no understanding of the rules
- Does the system understand Chinese?
 Just comprises a rule book and papers
- But the system as a whole does act as it understands Chinese!
 - Regarded as invalid by many scientists
- Does Google Translate understand Chinese?

The Turing Test vs. Chinese Room

You need to be able to

- tell the differences of the objectives of these two tests
- have an opinion about The Turing Test and Chinese Room

Summary

- Understand what is meant by combinatorial explosion (esp. wrt TSP)
- The Turing Test and Chinese Room
 - Be able to recognize the relationship between The Turing Test and The Chinese Room
- Definitions of AI, strong vs. weak AI

Self Study

- Read the following AIMA book chapters and understand
 - Al terminologies
 - Weak AI: Machine can possibly *act* intelligently
 - Strong AI: Machines can actually *think* intelligently
 - 4 categories of definitions from different AI books
 - Turing test (AIMA section 26.1)
 - A satisfactory operational definition of intelligence
 - The Chinese Room experiment (AIMA section 26.2)

Self Study

Systems that

Think like humansThink rationallyAct like humansAct rationally

Lab Session

> You only need to attend one of these sessions

- Friday 20th March, 11am-1pm
- Friday 20th March, 3-5pm
- Tuesday 24th March, 12-2pm
- Thursday 26th March, 2-4pm
- Monday 23rd March, 3–5pm (backup)
- Friday 27th March, 3–5pm (backup)
- Build ANNs in Matlab
 - Optional, but useful