
Genetic Algorithms

Objectives

To provide a background and understanding of basic genetic
algorithms and some of their applications.

•a basic genetic algorithm
•the basic discussion
•the applications of the algorithm

Genetic Algorithms

1859

Origin of the Species

Survival of the Fittest

Genetic Algorithms

1975

Genetic Algorithms

Artificial Survival of the Fittest

Genetic Algorithms

1989

Genetic Algorithms

Foundations and Applications

Genetic Algorithms

Terms

Biological GA Terms

Chromosome String

Gene Feature, character

Genomes Guesses, solutions,
collection of genes

Genetic algorithms are search procedures based on
the mechanics of genetics and natural selection.

Genetic Algorithms

Compared to exhaustive tree search techniques,
modern heuristic algorithms quickly converge to
sub-optimal solutions after examining only a small
fraction of the search space and have been
successfully applied to complex optimisation
problems.

Genetic Algorithms

Genetic algorithms try to imitate the Darwinian
evolution process in computer programs.

In evolutionary systems, populations evolve by
selective pressures, mating between individuals, and
alterations such as mutations.

In genetic algorithms, genetic operators evolve
solutions in the current population to create a new
population, simulating similar effects.

Genetic Algorithms

A genetic algorithm simulates Darwinian theory of
evolution using highly parallel, mathematical
algorithms that, transform a set (population) of
solutions (typically strings of 1's and 0's) into a new
population, using operators such as: reproduction,
mutation and crossover.

Genetic Algorithms

Determine the initial population of creatures
Determine the fitness of the population
Reproduce the population using the fittest parents
of the last generation
Determine the crossover point, this can also be
random
Determine if mutation occurs and if so on which
creature(s)

• Repeat from step 2 with the new population until
condition (X) is true

Genetic Algorithms

Can be implemented as three modules; the
evaluation module, the population module and
the reproduction module
Initial population
Evaluations on individuals
Reproduction
 Choose suitable parents (by evaluation rating)
 Produce two offspring (by probability)
 Mutation
Domain knowledge – evaluation function

Genetic Algorithms
Encoding the Solutions

The decision variables of a problem are
normally encoded into a finite length string

This could be a binary string or a list of integers
For example :

or 0 1 1 0 1 1 0 1 0 2 3 4 1 1 4 5

We could also represent
numbers as coloured boxes

 Generate Initial
Population

Population
 Generation 'n'

Crossover
 Population

Mutate
 Population

 n = n + 1

n = 1

Final
 Population

Genetic Algorithms
Flowchart (20 generations)

Selection

n<20?

Parent selection

Genetic Algorithms

Roulette Wheel
Selection

• Sum the fitness of all the population
members, TF
• Generate a random number, m,
between 0 and TF
• Return the first population member
whose fitness added to the preceding
population members is greater than or
equal to m

Parent selection

Genetic Algorithms

Evaluation • Responsible for evaluating a
chromosome
• Only part of the GA that has any
knowledge about the problem. The
rest of the GA modules are simply
operating on (typically) bit strings with
no information about the problem
• A different evaluation module is
needed for each problem

 Crossover

Genetic Algorithms

A percentage of the
population is selected for
breeding and assigned
random mates.

A random crossover
point is selected and a
pair of new solutions
are produced

1

2

1

2

Crossover

One Point Crossover in One Point Crossover in

Genetic AlgorithmsGenetic Algorithms

© Graham Kendall

gxk@cs.nott.ac.uk

http://cs.nott.ac.uk/~gxk

Adapted from Dr Graham Kendall’s
G5BAIM lecture example

Uniform Crossover inUniform Crossover in

Genetic AlgorithmsGenetic Algorithms

© Graham Kendall

gxk@cs.nott.ac.uk

http://cs.nott.ac.uk/~gxk

 Mutation

In a small percentage of
the population random

changes are made.

Genetic Algorithms

Genetic Algorithms

Each iteration of the loop is called a generation,
fitness can be gauged in several different ways
depending on the application of the algorithm.

Reproduction and crossover play the primary role in
artificial genetic search. Reproduction emphasises
highly fit strings (or good solutions), and crossover
recombines these selected solutions for new,
potentially better solutions.

Mutation plays a secondary role in the search by
providing diversity in the population.

Genetic Algorithms

Conceivable solutions are represented, the 'fittest'
will have the greatest chance of reproducing.

Successful properties will therefore be favourably
represented within the population of solutions.
The population is the successively 'optimised' after a
number of generations.

 Genetic Algorithm Example I

Maximise f(x) = x3 - 60 * x2 + 900 * x +100
0 <= x <= 31

Crossover probability, PC = 1.0
Mutation probability, PM = 0.0
x can be represented using five binary digits

0 100

1 941

2 1668

3 2287

4 2804

5 3225

6 3556

7 3803

8 3972

9 4069

10 4100

11 4071

12 3988

13 3857

14 3684

15 3475

16 3236

17 2973

18 2692

19 2399

20 2100

21 1801

22 1508

23 1227

24 964

25 725

26 516

27 343

28 212

29 129

30 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Max : x = 10

f(x) = x^3 - 60x^2 + 900x + 100

Adapted from Dr Graham Kendall’s G5BAIM lecture example

 Genetic Algorithm Example I

Generating random initial population

chromosome binary string x f(x)

P1 11100 28 212

P2 01111 15 3475

P3 10111 23 1227

P4 00100 4 2804

Total 7718

Average 1929.50

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31)

 Genetic Algorithm Example I

Choose two parents (roulette selection)

Roulette wheel Parents

4116 P3

1915 P2

 Genetic Algorithm Example I

One point crossover (random position 1)

1 0 1 1 1

0 1 1 1 1

P3

P2

1 1 1 1 1

0 0 1 1 1

C1

C2

0 0 1 0 0

0 1 1 1 1

P4

P2

0 0 1 1 1

0 1 1 0 0

C3

C4

 Genetic Algorithm Example I

New generation

chromosome binary string x f(x)

P1 11111 31 131

P2 00111 7 3803

P3 00111 7 3803

P4 01100 12 3889

Total 11735

Average 2933.75

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31)

 Genetic Algorithm Example I

chromosome binary
string

x f(x)

P1 11100 28 212

P2 01111 15 3475

P3 10111 23 1227

P4 00100 4 2804

Total 7718

Average 1929.50

chromosome binary
string

x f(x)

P1 11111 31 131

P2 00111 7 3803

P3 00111 7 3803

P4 01100 12 3889

Total 11735

Average 2933.75

Two generations

Mutation

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31)

 Genetic Algorithm Example II

Traveling Salesman Problem
a number of cities
costs of traveling between cities

a traveling sales man needs to visit all these
cities exactly once and return to the starting
city

What’s the cheapest route?

 Genetic Algorithm Example II

Traveling Salesman Problem

 Genetic Algorithm Example II

Initial generation

5 8 1 … … 84 32 27 54 67 P1

78 81 27 … … 9 11 7 44 24 P2

8 1 7 … … 9 16 36 24 19 P30

…

6.5

7.8

6.0

 Genetic Algorithm Example II

Choose pairs of parents

78 81 27 … … 9 11 7 44 24 P2

8 1 7 … … 9 16 36 24 19 P30 6.0

7.8

Crossover

78 81 27 … … 9 16 36 24 19 C2

8 1 7 … … 9 11 7 44 24 C1 5.9

6.2

13

 Genetic Algorithm Example II

Next generation

78 81 27 … … 9 16 36 24 19 P2

8 1 7 … … 9 11 7 44 24 P1 5.9

6.2

7 8 2 … … 5 10 76 4 79 P2 6.0

…

 Genetic Algorithm Example II

Traveling Salesman Problem
No. of cities: 100
Population size: 30

Cost: 6.37
Generation: 88

Cost: 6.34
Generation: 1100

There are many diverse applications of genetic
algorithms. They are best suited to problems where
the efficient solutions are not already known.

If they are applied to solvable problems, they will be
easily out-performed by efficient standard computing
methods.

The strength of GA's is their ability to heuristically
search for solutions when all else fails. If you can
represent the solutions to the problem in a suitable
format, such as a series of 1's and 0's, then the GA
will do the rest.

 Genetic Algorithm Example III

Applying
 Genetic Algorithms

to Personnel Scheduling

 Genetic Algorithm Example III

Personnel scheduling in healthcare
is usually a very complex operation

which has a profound effect upon the
efficient usage of expensive resources.

A number of nurses
A number of shifts each day
A set of constraints

•shift coverage
•one shift per day

•resting time
•workload per month
•consecutive shifts
•working weekends
•…

 Genetic Algorithm Example III

 Genetic Algorithm Example III

Genetic Algorithm
-Initial population

-construct rosters
-repair infeasible ones

 Genetic Algorithm Example III

Genetic Algorithm
-Select parents
-Recombine rows in the two rosters

-repair infeasible ones

+

 Genetic Algorithm Example III

Genetic Algorithm
-Mutation
-Local optimiser

 Genetic Algorithm Example III

Population Size
Crossover Probability
Mutation Probability
Local Optimiser

50
0.7

0.001
ON

 Genetic Algorithm Example III

Genetic Algorithm Applications

Combinatorial optimisation problems

• bin packing problems
• vehicle routing problems
• job shop scheduling

Genetic Algorithm Applications

Combinatorial optimisation problems

• portfolio optimization
• multimedia multicast routing
• knapsack problem

Genetic Algorithm Performance

There are a number of factors which affect
the performance of a genetic algorithm.

• The size of the population
• Selection pressure (elitism, tournament)
• The cross-over probability
• The mutation probability
• Defining convergence
• Local optimisation

Genetic Algorithm in Meta-heuristics

Meta-heuristics

• Population based
• Genetic algorithms
• Memetic algorithms
• Swarm intelligence (ant colony, particle
swarm optimisation)
• …

• Local search based
• Tabu search
• Variable neighbourhood search
• Simulated annealing
• …

Conclusions

Survival of the fittest, the most fit of a particular

generation (the nearest to a correct answer)

are used as parents for the next generation.

The most fit of this new generation are parents

for the next, and so on. This eradicates worse

solutions and eliminates bad family lines.

Conclusions

Genetic algorithms are a very powerful tool, allowing
searching for solutions when there are no other
feasible means to do so.

The algorithm is easy to produce and simple to
understand and enhancements easily introduced. This
gives the algorithm much flexibility.

Exploitation of the algorithm has still much more work
to be done.

