
Genetic Algorithms 

Objectives 

To provide a background and understanding of basic genetic 
algorithms and some of their applications. 
 

•a basic genetic algorithm 
•the basic discussion  
•the applications of the algorithm 



Genetic Algorithms 

1859 
 

Origin of the Species 
 

Survival of the Fittest 
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1975 
 

Genetic Algorithms 
 

Artificial Survival of the Fittest 
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1989 
 

Genetic Algorithms 
 

Foundations and Applications 



Genetic Algorithms 

Terms 

Biological GA Terms 

  

Chromosome String 

Gene Feature, character 

Genomes Guesses, solutions, 
collection of genes 

 

Genetic algorithms are search procedures based on 
the mechanics of genetics and natural selection. 



Genetic Algorithms 

Compared to exhaustive tree search techniques, 
modern heuristic algorithms quickly converge to 
sub-optimal solutions after examining only a small 
fraction of the search space and have been 
successfully applied to complex optimisation 
problems. 



Genetic Algorithms 

Genetic algorithms try to imitate the Darwinian 
evolution process in computer programs.  

In evolutionary systems, populations evolve by 
selective pressures, mating between individuals, and 
alterations such as mutations.  

In genetic algorithms, genetic operators evolve 
solutions in the current population to create a new 
population, simulating similar effects. 



Genetic Algorithms 

A genetic algorithm simulates Darwinian theory of 
evolution using highly parallel, mathematical 
algorithms that, transform a set (population) of 
solutions (typically strings of 1's and 0's) into a new 
population, using operators such as: reproduction, 
mutation and crossover.  



Genetic Algorithms 

Determine the initial population of creatures  
Determine the fitness of the population  
Reproduce the population using the fittest parents 
of the last generation  
Determine the crossover point, this can also be 
random  
Determine if mutation occurs and if so on which 
creature(s)  

• Repeat from step 2 with the new population until 
condition (X) is true  



Genetic Algorithms 

Can be implemented as three modules; the 
evaluation module, the population module and 
the reproduction module 
Initial population 
Evaluations on individuals 
Reproduction 
 Choose suitable parents (by evaluation rating) 
 Produce two offspring (by probability) 
 Mutation 
Domain knowledge – evaluation function 



Genetic Algorithms 
Encoding the Solutions 

The decision variables of a problem are 
normally encoded into a finite length string 

This could be a binary string or a list of integers 
For example : 

or 0 1 1 0 1 1 0 1 0 2 3 4 1 1 4 5 

We could also represent 
numbers as coloured boxes 
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Genetic Algorithms 
Flowchart (20 generations) 

Selection 

n<20? 



Parent selection 

Genetic Algorithms 

Roulette Wheel 
Selection 

• Sum the fitness of all the population 
members, TF 
• Generate a random number, m, 
between 0 and TF 
• Return the first population member 
whose fitness added to the preceding 
population members is greater than or 
equal to m 



Parent selection 

Genetic Algorithms 

Evaluation • Responsible for evaluating a 
chromosome 
• Only part of the GA that has any 
knowledge about the problem. The 
rest of the GA modules are simply 
operating on (typically) bit strings with 
no information about the problem 
• A different evaluation module is 
needed for each problem 



 Crossover  

Genetic Algorithms 

A percentage of the 
population is selected for 
breeding and assigned 
random mates. 

A random crossover 
point is selected and a 
pair of new solutions 
are produced 

1 

2 

1 

2 

Crossover 
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 Mutation  

In a small percentage of 
the population random 

changes are made. 

Genetic Algorithms 



Genetic Algorithms 

Each iteration of the loop is called a generation, 
fitness can be gauged in several different ways 
depending on the application of the algorithm.  

Reproduction and crossover play the primary role in 
artificial genetic search. Reproduction emphasises 
highly fit strings (or good solutions), and crossover 
recombines these selected solutions for new, 
potentially better solutions.  

Mutation plays a secondary role in the search by 
providing diversity in the population. 



Genetic Algorithms 

Conceivable solutions are represented, the 'fittest' 
will have the greatest chance of reproducing.  
 
Successful properties will therefore be favourably 
represented within the population of solutions.  
The population is the successively 'optimised' after a 
number of generations. 



 Genetic Algorithm Example I 

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 
0 <= x <= 31 

 
Crossover probability, PC = 1.0 
Mutation probability, PM = 0.0 
x can be represented using five binary digits 

0 100

1 941

2 1668

3 2287

4 2804

5 3225

6 3556

7 3803

8 3972

9 4069

10 4100

11 4071

12 3988

13 3857

14 3684

15 3475

16 3236

17 2973

18 2692

19 2399

20 2100

21 1801

22 1508

23 1227

24 964

25 725

26 516

27 343

28 212

29 129

30 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Max : x = 10

f(x) = x^3 - 60x^2 + 900x + 100

Adapted from Dr Graham Kendall’s G5BAIM lecture example 



 Genetic Algorithm Example I 

Generating random initial population 

chromosome binary string x f(x) 

P1 11100 28 212 

P2 01111 15 3475 

P3 10111 23 1227 

P4 00100 4 2804 

Total 7718 

Average 1929.50 

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31) 



 Genetic Algorithm Example I 

Choose two parents (roulette selection) 

Roulette wheel Parents 

4116 P3 

1915 P2 



 Genetic Algorithm Example I 

One point crossover (random position 1) 

1 0 1 1 1 

0 1 1 1 1 

P3 

P2 

1 1 1 1 1 

0 0 1 1 1 

C1 

C2 

0 0 1 0 0 

0 1 1 1 1 

P4 

P2 

0 0 1 1 1 

0 1 1 0 0 

C3 

C4 



 Genetic Algorithm Example I 

New generation 

chromosome binary string x f(x) 

P1 11111 31 131 

P2 00111 7 3803 

P3 00111 7 3803 

P4 01100 12 3889 

Total 11735 

Average 2933.75 

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31) 



 Genetic Algorithm Example I 

chromosome binary 
string 

x f(x) 

P1 11100 28 212 

P2 01111 15 3475 

P3 10111 23 1227 

P4 00100 4 2804 

Total 7718 

Average 1929.50 

chromosome binary 
string 

x f(x) 

P1 11111 31 131 

P2 00111 7 3803 

P3 00111 7 3803 

P4 01100 12 3889 

Total 11735 

Average 2933.75 

Two generations 

Mutation 

Maximise f(x) = x3 - 60 * x2 + 900 * x +100 (0 <= x <= 31) 



 Genetic Algorithm Example II 

Traveling Salesman Problem 
a number of cities 
costs of traveling between cities 

 
a traveling sales man needs to visit all these 
cities exactly once and return to the starting 
city 
 
What’s the cheapest route? 



 Genetic Algorithm Example II 

Traveling Salesman Problem 



 Genetic Algorithm Example II 

Initial generation 

5 8 1 … … 84 32 27 54 67 P1 

78 81 27 … … 9 11 7 44 24 P2 

8 1 7 … … 9 16 36 24 19 P30 

… 

6.5 

7.8 

6.0 



 Genetic Algorithm Example II 

Choose pairs of parents 

78 81 27 … … 9 11 7 44 24 P2 

8 1 7 … … 9 16 36 24 19 P30 6.0 

7.8 

Crossover 

78 81 27 … … 9 16 36 24 19 C2 

8 1 7 … … 9 11 7 44 24 C1 5.9 

6.2 

13 



 Genetic Algorithm Example II 

Next generation 

78 81 27 … … 9 16 36 24 19 P2 

8 1 7 … … 9 11 7 44 24 P1 5.9 

6.2 

7 8 2 … … 5 10 76 4 79 P2 6.0 

… 



 Genetic Algorithm Example II 

Traveling Salesman Problem 
No. of cities: 100 
Population size: 30 

Cost: 6.37 
Generation: 88 

Cost: 6.34 
Generation: 1100 



There are many diverse applications of genetic 
algorithms. They are best suited to problems where 
the efficient solutions are not already known. 

If they are applied to solvable problems, they will be 
easily out-performed by efficient standard computing 
methods. 

The strength of GA's is their ability to heuristically 
search for solutions when all else fails. If you can 
represent the solutions to the problem in a suitable 
format, such as a series of 1's and 0's, then the GA 
will do the rest. 

 Genetic Algorithm Example III 



Applying 
 Genetic Algorithms  

to Personnel Scheduling 

 Genetic Algorithm Example III 

Personnel scheduling in healthcare 
is usually a very complex operation 

which has a profound effect upon the 
efficient usage of expensive resources. 



A number of nurses 
A number of shifts each day 
A set of constraints 

•shift coverage 
•one shift per day 
 
•resting time 
•workload per month 
•consecutive shifts 
•working weekends 
•… 

 Genetic Algorithm Example III 



 Genetic Algorithm Example III 



Genetic Algorithm 
-Initial population 

-construct rosters 
-repair infeasible ones 

 Genetic Algorithm Example III 



Genetic Algorithm 
-Select parents 
-Recombine rows in the two rosters 

-repair infeasible ones 

+ 

 Genetic Algorithm Example III 



Genetic Algorithm 
-Mutation 
-Local optimiser 

 Genetic Algorithm Example III 



Population Size 
Crossover Probability 
Mutation Probability 
Local Optimiser 

50 
0.7 

0.001 
ON 

 Genetic Algorithm Example III 



Genetic Algorithm Applications 

Combinatorial optimisation problems 

• bin packing problems 
• vehicle routing problems 
• job shop scheduling 



Genetic Algorithm Applications 

Combinatorial optimisation problems 

• portfolio optimization 
• multimedia multicast routing 
• knapsack problem 



Genetic Algorithm Performance 

There are a number of factors which affect 
the performance of a genetic algorithm. 

• The size of the population 
• Selection pressure (elitism, tournament) 
• The cross-over probability 
• The mutation probability 
• Defining convergence 
• Local optimisation 
 



Genetic Algorithm in Meta-heuristics 

Meta-heuristics 

• Population based 
• Genetic algorithms 
• Memetic algorithms 
• Swarm intelligence (ant colony, particle 
swarm optimisation) 
• … 

• Local search based 
• Tabu search 
• Variable neighbourhood search 
• Simulated annealing 
• … 



Conclusions 

Survival of the fittest, the most fit of a particular 

generation (the nearest to a correct answer) 

are used as parents for the next generation. 

 

The most fit of this new generation are parents 

for the next, and so on. This eradicates worse 

solutions and eliminates bad family lines. 



Conclusions 

Genetic algorithms are a very powerful tool, allowing 
searching for solutions when there are no other 
feasible means to do so.  
 
The algorithm is easy to produce and simple to 
understand and enhancements easily introduced. This 
gives the algorithm much flexibility. 
 
Exploitation of the algorithm has still much more work 
to be done. 


