
Introduction to Artificial Intelligence 
(G51IAI)

Dr Rong Qu

Problem Space and Search Tree



G51IAI – Search Space & Tree

Trees

 Nodes

 Root node

 Children/parent of nodes

 Leaves

 Branches

 Average branching factor

 average number of branches of the nodes in the 
tree

JB C

D

E

F

G

A

H

I



G51IAI – Search Space & Tree

Problem Space

 Many problems exhibit no detectable regular 
structure to be exploited, they appear 
“chaotic”, and do not yield to efficient 
algorithms



G51IAI – Search Space & Tree

Problem Space



G51IAI – Search Space & Tree

Problem Space

The concept of search plays an important 
role in science and engineering

In one way, any problem whatsoever can 
be seen as a search for “the right 
answer”



G51IAI – Search Space & Tree

Problem Space

 Search space

 Set of all possible solutions to a problem

 Search algorithms

 Take a problem as input

 Return a solution to the problem



G51IAI – Search Space & Tree

Problem Space

 Search algorithms

 Uninformed search algorithms (3 hours)

 Simplest naïve search

 Informed search algorithms (2 hours)

 Use of heuristics that apply domain knowledge

 Dr Hyde



G51IAI – Search Space & Tree

Problem Space

 Often we can't simply write down and solve 
the equations for a problem

 Exhaustive search of large state spaces 
appears to be the only viable approach

How?



G51IAI – Search Space & Tree

Trees

 Depth of a node

 Number of branches away 
from the root node

 Depth of a tree

 Depth of the deepest node 
in the tree

 Examples: TSP vs. game

JB C

D

E

F

G

A

H

I



G51IAI – Search Space & Tree

Trees

 Tree size

 Branching factor b = 2 
(binary tree)

 Depth d

JB C

D

E

F

G

A

H

I

d nodes at d, 2d total nodes

0 1 1

1 2 3

2 4 7

3 8 15

4 16 31

5 32 63

6 64 127

Exponentially -
Combinatorial explosion



G51IAI – Search Space & Tree

Trees JB C

D

E

F

G

A

H

I

Exponentially -
Combinatorial explosion



JB C

D

E

F

G

A

H

I

G51IAI – Search Space & Tree

Search Tree

 Heart of search techniques

 Managing the data structure

 Nodes: states of problem

 Root node: initial state of the problem

 Branches: moves by operator

 Branching factor: number of neighborhoods



G51IAI – Search Space & Tree

Search Tree – Define a Problem Space



G51IAI – Search Space & Tree

Search Tree – Example I



G51IAI – Search Space & Tree

Search Tree – Example I

Compared with TSP tree?



G51IAI – Search Space & Tree

Search Tree – Example II

 1st level: 1 root node (empty board)

 2nd level: 8 nodes

 3rd level: 6 nodes for each of the node on the 2nd

level (?)

 …



G51IAI – Search Space & Tree

Search Trees

 Issues

 Search trees grow very quickly

 The size of the search tree is governed by the 
branching factor

 Even the simple game with branching factor of 3 
has a complete search tree of large number of 
potential nodes

 The search tree for chess has a branching factor 
of about 35



G51IAI – Search Space & Tree

Search Trees

Claude Shannon delivered a paper in 1949 at a New 
York conference on how a computer could play chess. 

Chess has 10120 unique games (with an average of 40 
moves - the average length of a master game). 

Working at 200 million positions per second, Deep Blue 
would require 10100 years to evaluate all possible games. 

To put this is some sort of perspective, the universe is 
only about 1010 years old and 10120 is larger than the 
number of atoms in the universe.



G51IAI – Search Space & Tree

Implementing a Search
- What we need to store

 State

 This represents the state in the state space to 
which this node corresponds

 Parent-Node

 This points to the node that generated this node. 
In a data structure representing a tree it is usual 
to call this the parent node



G51IAI – Search Space & Tree

 Operator
 The operator that was applied to generate this 

node

 Depth
 The number of branches from the root

 Path-Cost
 The path cost from the initial state to this node

Implementing a Search
- What we need to store



G51IAI – Search Space & Tree

Implementing a Search - Datatype

 Datatype node

 Components:

 STATE,

 PARENT-NODE,

 OPERATOR,

 DEPTH,

 PATH-COST



G51IAI – Search Space & Tree

Using a Tree
– The Obvious Solution?

 It can be wasteful on space

 It can be difficult to implement, particularly if 
there are varying number of children (as in 
tic-tac-toe)

 It is not always obvious which node to 
expand next. We may have to search the tree 
looking for the best leaf node (sometimes 
called the fringe or frontier nodes). This can 
obviously be computationally expensive



G51IAI – Search Space & Tree

Using a Tree
– Maybe not so obvious

 Therefore

 It would be nice to have a “simpler” data structure 
to represent our tree

 And it would be nice if the next node to be 
expanded was an O(1)* operation

 *Big O: Notation in complexity theory

 How the size of input affect the algorithms 
computational resource (time or memory)

 Complexity of algorithms



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

Summary of Problem Space

 Search space

 Search tree (problem formulation)

 General search algorithm

 Read Chapter 3 AIMA


