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Trees

 Nodes

 Root node

 Children/parent of nodes

 Leaves

 Branches

 Average branching factor

 average number of branches of the nodes in the 
tree
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Problem Space

 Many problems exhibit no detectable regular 
structure to be exploited, they appear 
“chaotic”, and do not yield to efficient 
algorithms
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Problem Space

The concept of search plays an important 
role in science and engineering

In one way, any problem whatsoever can 
be seen as a search for “the right 
answer”
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Problem Space

 Search space

 Set of all possible solutions to a problem

 Search algorithms

 Take a problem as input

 Return a solution to the problem
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Problem Space

 Search algorithms

 Uninformed search algorithms (3 hours)

 Simplest naïve search

 Informed search algorithms (2 hours)

 Use of heuristics that apply domain knowledge

 Dr Hyde
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Problem Space

 Often we can't simply write down and solve 
the equations for a problem

 Exhaustive search of large state spaces 
appears to be the only viable approach

How?
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Trees

 Depth of a node

 Number of branches away 
from the root node

 Depth of a tree

 Depth of the deepest node 
in the tree

 Examples: TSP vs. game
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Trees

 Tree size

 Branching factor b = 2 
(binary tree)

 Depth d
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d nodes at d, 2d total nodes

0 1 1

1 2 3

2 4 7

3 8 15

4 16 31

5 32 63

6 64 127

Exponentially -
Combinatorial explosion
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Exponentially -
Combinatorial explosion
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Search Tree

 Heart of search techniques

 Managing the data structure

 Nodes: states of problem

 Root node: initial state of the problem

 Branches: moves by operator

 Branching factor: number of neighborhoods
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Search Tree – Define a Problem Space
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Search Tree – Example I
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Search Tree – Example I

Compared with TSP tree?
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Search Tree – Example II

 1st level: 1 root node (empty board)

 2nd level: 8 nodes

 3rd level: 6 nodes for each of the node on the 2nd

level (?)

 …
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Search Trees

 Issues

 Search trees grow very quickly

 The size of the search tree is governed by the 
branching factor

 Even the simple game with branching factor of 3 
has a complete search tree of large number of 
potential nodes

 The search tree for chess has a branching factor 
of about 35
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Search Trees

Claude Shannon delivered a paper in 1949 at a New 
York conference on how a computer could play chess. 

Chess has 10120 unique games (with an average of 40 
moves - the average length of a master game). 

Working at 200 million positions per second, Deep Blue 
would require 10100 years to evaluate all possible games. 

To put this is some sort of perspective, the universe is 
only about 1010 years old and 10120 is larger than the 
number of atoms in the universe.
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Implementing a Search
- What we need to store

 State

 This represents the state in the state space to 
which this node corresponds

 Parent-Node

 This points to the node that generated this node. 
In a data structure representing a tree it is usual 
to call this the parent node
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 Operator
 The operator that was applied to generate this 

node

 Depth
 The number of branches from the root

 Path-Cost
 The path cost from the initial state to this node

Implementing a Search
- What we need to store
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Implementing a Search - Datatype

 Datatype node

 Components:

 STATE,

 PARENT-NODE,

 OPERATOR,

 DEPTH,

 PATH-COST
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Using a Tree
– The Obvious Solution?

 It can be wasteful on space

 It can be difficult to implement, particularly if 
there are varying number of children (as in 
tic-tac-toe)

 It is not always obvious which node to 
expand next. We may have to search the tree 
looking for the best leaf node (sometimes 
called the fringe or frontier nodes). This can 
obviously be computationally expensive
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Using a Tree
– Maybe not so obvious

 Therefore

 It would be nice to have a “simpler” data structure 
to represent our tree

 And it would be nice if the next node to be 
expanded was an O(1)* operation

 *Big O: Notation in complexity theory

 How the size of input affect the algorithms 
computational resource (time or memory)

 Complexity of algorithms
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General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function
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General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
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Summary of Problem Space

 Search space

 Search tree (problem formulation)

 General search algorithm

 Read Chapter 3 AIMA


