
Introduction to Artificial Intelligence 
(G51IAI)

Dr Rong Qu

Problem Space and Search Tree



G51IAI – Search Space & Tree

Trees

 Nodes

 Root node

 Children/parent of nodes

 Leaves

 Branches

 Average branching factor

 average number of branches of the nodes in the 
tree

JB C

D

E

F

G

A

H

I



G51IAI – Search Space & Tree

Problem Space

 Many problems exhibit no detectable regular 
structure to be exploited, they appear 
“chaotic”, and do not yield to efficient 
algorithms



G51IAI – Search Space & Tree

Problem Space



G51IAI – Search Space & Tree

Problem Space

The concept of search plays an important 
role in science and engineering

In one way, any problem whatsoever can 
be seen as a search for “the right 
answer”



G51IAI – Search Space & Tree

Problem Space

 Search space

 Set of all possible solutions to a problem

 Search algorithms

 Take a problem as input

 Return a solution to the problem



G51IAI – Search Space & Tree

Problem Space

 Search algorithms

 Uninformed search algorithms (3 hours)

 Simplest naïve search

 Informed search algorithms (2 hours)

 Use of heuristics that apply domain knowledge

 Dr Hyde



G51IAI – Search Space & Tree

Problem Space

 Often we can't simply write down and solve 
the equations for a problem

 Exhaustive search of large state spaces 
appears to be the only viable approach

How?



G51IAI – Search Space & Tree

Trees

 Depth of a node

 Number of branches away 
from the root node

 Depth of a tree

 Depth of the deepest node 
in the tree

 Examples: TSP vs. game

JB C

D

E

F

G

A

H

I



G51IAI – Search Space & Tree

Trees

 Tree size

 Branching factor b = 2 
(binary tree)

 Depth d

JB C

D

E

F

G

A

H

I

d nodes at d, 2d total nodes

0 1 1

1 2 3

2 4 7

3 8 15

4 16 31

5 32 63

6 64 127

Exponentially -
Combinatorial explosion



G51IAI – Search Space & Tree

Trees JB C

D

E

F

G

A

H

I

Exponentially -
Combinatorial explosion



JB C

D

E

F

G

A

H

I

G51IAI – Search Space & Tree

Search Tree

 Heart of search techniques

 Managing the data structure

 Nodes: states of problem

 Root node: initial state of the problem

 Branches: moves by operator

 Branching factor: number of neighborhoods



G51IAI – Search Space & Tree

Search Tree – Define a Problem Space



G51IAI – Search Space & Tree

Search Tree – Example I



G51IAI – Search Space & Tree

Search Tree – Example I

Compared with TSP tree?



G51IAI – Search Space & Tree

Search Tree – Example II

 1st level: 1 root node (empty board)

 2nd level: 8 nodes

 3rd level: 6 nodes for each of the node on the 2nd

level (?)

 …



G51IAI – Search Space & Tree

Search Trees

 Issues

 Search trees grow very quickly

 The size of the search tree is governed by the 
branching factor

 Even the simple game with branching factor of 3 
has a complete search tree of large number of 
potential nodes

 The search tree for chess has a branching factor 
of about 35



G51IAI – Search Space & Tree

Search Trees

Claude Shannon delivered a paper in 1949 at a New 
York conference on how a computer could play chess. 

Chess has 10120 unique games (with an average of 40 
moves - the average length of a master game). 

Working at 200 million positions per second, Deep Blue 
would require 10100 years to evaluate all possible games. 

To put this is some sort of perspective, the universe is 
only about 1010 years old and 10120 is larger than the 
number of atoms in the universe.



G51IAI – Search Space & Tree

Implementing a Search
- What we need to store

 State

 This represents the state in the state space to 
which this node corresponds

 Parent-Node

 This points to the node that generated this node. 
In a data structure representing a tree it is usual 
to call this the parent node



G51IAI – Search Space & Tree

 Operator
 The operator that was applied to generate this 

node

 Depth
 The number of branches from the root

 Path-Cost
 The path cost from the initial state to this node

Implementing a Search
- What we need to store



G51IAI – Search Space & Tree

Implementing a Search - Datatype

 Datatype node

 Components:

 STATE,

 PARENT-NODE,

 OPERATOR,

 DEPTH,

 PATH-COST



G51IAI – Search Space & Tree

Using a Tree
– The Obvious Solution?

 It can be wasteful on space

 It can be difficult to implement, particularly if 
there are varying number of children (as in 
tic-tac-toe)

 It is not always obvious which node to 
expand next. We may have to search the tree 
looking for the best leaf node (sometimes 
called the fringe or frontier nodes). This can 
obviously be computationally expensive



G51IAI – Search Space & Tree

Using a Tree
– Maybe not so obvious

 Therefore

 It would be nice to have a “simpler” data structure 
to represent our tree

 And it would be nice if the next node to be 
expanded was an O(1)* operation

 *Big O: Notation in complexity theory

 How the size of input affect the algorithms 
computational resource (time or memory)

 Complexity of algorithms



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

General Search

 Function GENERAL-SEARCH (problem, QUEUING-FN) returns a 
solution or failure

 nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-
STATE[problem]))

 Loop do

 If nodes is empty then return failure

 node = REMOVE-FRONT(nodes)

 If GOAL-TEST[problem] applied to STATE(node) succeeds 
then return node

 nodes = QUEUING-
FN(nodes,EXPAND(node,OPERATORS[problem]))

 End

 End Function



G51IAI – Search Space & Tree

Summary of Problem Space

 Search space

 Search tree (problem formulation)

 General search algorithm

 Read Chapter 3 AIMA


