
Introduction to Artificial Intelligence
(G51IAI)

Dr Rong Qu

Blind Searches

G51IAI – Blind Searches

Blind Searches

Function GENERAL-SEARCH (problem, QUEUING-FN) returns a solution or failure
nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
Loop do

If nodes is empty then return failure
node = REMOVE-FRONT(nodes)
If GOAL-TEST[problem] applied to STATE(node) succeeds

then return node
nodes = QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

End Loop
End Function

G51IAI – Blind Searches

Blind Searches

 The difference between searches lies in the order in
which nodes are selected for expansion

 The search always visits the first node in the fringe
queue
 REMOVE

 The only way to control the ordering
 INSERT

G51IAI – Blind Searches

Breadth First Search

G51IAI – Blind Searches

Breadth First Search - Method

 Expand Root Node First

 Expand all nodes at level 1 before expanding
level 2

OR

 Expand all nodes at level d before expanding
nodes at level d+1

G51IAI – Blind Searches

Breadth First Search - Implementation

 Use a queuing function that adds nodes to
the end of the queue

Function BREADTH-FIRST-SEARCH(problem) returns a solution or
failure

Return GENERAL-SEARCH (problem, ENQUEUE-AT-END)

G51IAI – Blind Searches

Breadth First Search - Implementation

AB CC D ED E F G

A

B C

D E D E F G

node = REMOVE-FRONT(nodes)
If GOAL-TEST[problem] applied to STATE(node) succeeds

then return node
nodes = QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

A

C D E FB

G H I J K L M N O P

Q R S T U V W X Y Z

The example node set

Initial state

Goal state

A

L

Press space to see a BFS of the example node set

A

C D E FB

G H I J K L

Q R S T U

A

B C D

We begin with our initial state: the node

labeled A. Press space to continue

This node is then expanded to reveal

further (unexpanded) nodes. Press space

Node A is removed from the queue. Each

revealed node is added to the END of the

queue. Press space to continue the search.

The search then moves to the first node

in the queue. Press space to continue.

Node B is expanded then removed from the

queue. The revealed nodes are added to the

END of the queue. Press space.

Size of Queue: 0

Nodes expanded: 0 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Nodes expanded: 1

Queue: B, C, D, E, F

Press space to begin the search

Size of Queue: 5

Current level: 0Current Action: Expanding

Queue: C, D, E, F, G, HSize of Queue: 6

Nodes expanded: 2 Current level: 1

We then backtrack to expand node C,

and the process continues. Press space

Current Action: Backtracking Current level: 0Current level: 1

Queue: D, E, F, G, H, I, JSize of Queue: 7

Nodes expanded: 3 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1

Queue: E, F, G, H, I, J, K, LSize of Queue: 8

Nodes expanded: 4 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1Current Action: Expanding

NM

Queue: F, G, H, I, J, K, L, M, NSize of Queue: 9

Nodes expanded: 5

E

Current Action: Backtracking Current level: 0Current Action: Expanding Current level: 1

O P

Queue: G, H, I, J, K, L, M, N, O, PSize of Queue: 10

Nodes expanded: 6

F

Current Action: Backtracking Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: H, I, J, K, L, M, N, O, P, Q

Nodes expanded: 7

G

Current Action: Backtracking Current level: 1Current Action: Expanding

Queue: I, J, K, L, M, N, O, P, Q, R

Nodes expanded: 8

H

Current Action: Backtracking Current level: 2Current level: 1Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: J, K, L, M, N, O, P, Q, R, S

Nodes expanded: 9

I

Current Action: Backtracking Current level: 1Current level: 2Current Action: Expanding

Queue: K, L, M, N, O, P, Q, R, S, T

Nodes expanded: 10

J

Current Action: Backtracking Current level: 1Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: L, M, N, O, P, Q, R, S, T, U

Nodes expanded: 11

K

Current Action: Backtracking Current level: 1

LLLL

Node L is located and the search returns

a solution. Press space to end.

FINISHED SEARCH

Queue: EmptySize of Queue: 0

Current level: 2

BREADTH-FIRST SEARCH PATTERN

L

Press space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the search

G51IAI – Blind Searches

Evaluating Breadth First Search

 Observations
 Very systematic

 If there is a solution breadth first search is
guaranteed to find it

 If there are several solutions then breadth first
search will always find the shallowest goal state
first and if the cost of a solution is a non-
decreasing function of the depth then it will
always find the cheapest solution

 Path cost

G51IAI – Blind Searches

Evaluating Breadth First Search

 Evaluating against four criteria

 Optimal

 Complete

 Time complexity

 Space complexity

G51IAI – Blind Searches

Evaluating Breadth First Search

 Evaluating against four criteria

 Complete?
 Yes

 Optimal?
 Yes

G51IAI – Blind Searches

Evaluating Breadth First Search

 Evaluating against four criteria
 Space Complexity

 O(bd)

 Time Complexity
 O(bd) i.e. number of leaves

 1 + b + b2 + b3 + ... + bd-1 i.e. O(bd)

 b: the average branching factor
 d: is the depth of the search tree

Note : The space/time complexity could be less as the solution may be
found somewhere before the dth level (depends on the problem).

G51IAI – Blind Searches

Exponential Growth

 Exponential growth quickly makes complete
state space searches unrealistic

 If the branching factor was 10, by level 5 we
would need to search 100,000 nodes, i.e. 105

G51IAI – Blind Searches

Exponential Growth

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes

2 111 0.1 second 11 kilobytes

4 11,111 11 seconds 1 megabyte

6 10
6
 18 minutes 111 megabytes

8 10
8
 31 hours 11 gigabytes

10 10
10

 128 days 1 terabyte

12 10
12

 35 years 111 terabytes

14 10
14

 3500 years 11,111 terabytes

Time and memory requirements for breadth-first search,

assuming a branching factor of 10, 100 bytes per node and

searching 1000 nodes/second

G51IAI – Blind Searches

Breadth First Search - Observations

 Space is more of a factor to breadth first
search than time

 Time is still an issue

 Who has 35 years to wait for an answer to a level
12 problem (or even 128 days to a level 10
problem)

G51IAI – Blind Searches

Breadth First Search - Observations

 It could be argued that as technology gets
faster then exponential growth will not be a
problem

 But even if technology is 100 times faster

 we would still have to wait 35 years for a level 14
problem and what if we hit a level 15 problem!

G51IAI – Blind Searches

Uniform Cost Search (vs. BFS)

G51IAI – Blind Searches

Uniform Cost Search (vs. BFS)

 BFS will find the optimal (shallowest) solution as long
as the cost is a function of the depth

 Suppose that we have a tree in which all the weights
of branches are one

 Weight of a path from the root to a node N is just the
depth of node N

G51IAI – Blind Searches

Uniform Cost Search (vs. BFS)

 Uniform Cost Search can be used when this
is not the case
 will find the cheapest solution provided that the

cost of the path never decreases as we proceed
along the path

 Uniform Cost Search works by expanding
the lowest cost node on the fringe

G51IAI – Blind Searches

Uniform Cost Search (vs. BFS)

 Cost of a node n
 the total cost of the path from the root to n

 “Search all nodes of cost c before those of
cost c+1”

 In BFS deeper nodes always arrive after shallower
nodes

 In UCS the costs of new nodes do not have such a
nice pattern

G51IAI – Blind Searches

Uniform Cost Search - implementation

 In UCS we need to
1. explicitly store the cost g of a node
2. explicitly use such costs in deciding the ordering in

the queue

 Always remove the smallest cost node first
 sort the queue in increasing order
 alternatively, search the queue and remove the

smallest cost
 Nodes removed by cost, not by order of arrival

G51IAI – Blind Searches

Uniform Cost Search - Example
1 10

5 5

15 5

S
B

G

C

A

• BFS will find the path SAG, with a cost of 11, but

SBG is cheaper with a cost of 10

• UCS will find the cheaper solution (SBG). It will

find SAG but will not see it as it is not at the head

of the queue

S

Size of Queue: 0

Nodes expanded: 0

Queue: Empty

Current action: Waiting…. Current level: n/a

UNIFORM COST SEARCH PATTERN

Press space to begin the search

Current action: Expanding Current level: 0

Queue: SSize of Queue: 1

A

B

C

Size of Queue: 3 Queue: A, B, C

1

15

5

We start with our initial state and expand it…Node S is removed from the queue and the revealed nodes are added to the queue. The

queue is then sorted on path cost. Nodes with cheaper path cost have priority.In this case

the queue will be Node A (1), node B (5), followed by node C (15). Press space.

We now expand the node at the front of the queue, node A. Press space to continue.

Nodes expanded: 1

S

Current level: 1

G

Node A is removed from the queue and the revealed node (node G) is added to the queue.

The queue is again sorted on path cost. Note, we have now found a goal state but do not

recognise it as it is not at the front of the queue. Node B is the cheaper node. Press space.

10
A

Nodes expanded: 2

Queue: B, G11, C

Current action: Backtracking Current level: 0Current level: 1Current action: Expanding

5

Nodes expanded: 3

Queue: G10, G11, C15

B

Once node B has been expanded it is removed from the queue and the revealed node

(node G) is added. The queue is again sorted on path cost. Note, node G now appears in

the queue twice, once as G10 and once as G11. As G10 is at the front of the queue, we now

proceed to goal state. Press space.

Current level: 2

Queue: EmptySize of Queue: 0

FINISHED SEARCH

GGGGG

The goal state is achieved and the

path S-B-G is returned. In relation to

path cost, UCS has found the optimal

route. Press space to end.

G51IAI – Blind Searches

Uniform Cost Search - properties

 Completeness:

 If there is a path to a goal then UCS will find it

 If there is no path, then UCS will eventually report
that the goal is unreachable

 Optimality:

 UCS will report a minimum cost path (there might
be many)

G51IAI – Blind Searches

UCS vs. BFS - queue

 Breadth First Search
 Nodes added to the end of the queue

 Uniform Cost Search
 Nodes ordered by their cost

 Queue
 Open nodes/fringe nodes

 First node removed/expended during the search

G51IAI – Blind Searches

UCS vs. BFS – complete & optimal

 Breadth First Search
 Optimal

 Only if the branch cost is the same

 Uniform Cost Search
 Optimal

 Even if the branch cost is different

 Complete
 Systematic search throughout the whole tree

G51IAI – Blind Searches

UCS vs. BFS – complexity

 Time and space complexity
O(bd) (bounded by bd)

 UCS is usually better than BFS

 UCS = BFS
 When all solutions rather than just one solution is

needed
 When all branches have the same cost

 We are talking about the worst case scenario

G51IAI – Blind Searches

Uniform Cost Search - implementation

Node Name

Any needed maths.
Usually: values of g, h, and/or f

Expansion Number

(order of expansion)

Blank if in fringe

S
B

G

C

A

1 10

5 5

15 5

UNIFORM COST SEARCH PATTERN

Press space to begin the search

1

15

5

In terms of a search tree we could represent the UCS example as follows

10

5

The goal state is achieved.

In relation to path cost, UCS has

found the optimal route with 4

expansions.

S

g=0

G

g = 11

C

g=15

B

g=5

A

g=1

G

g = 10

Expansion Order

(blank if still in fringe)

Maths: g

2

3 4
1

Note that G is split into two nodes

corresponding to the two paths.

S
B

G

C

A

1 10

5 5

15 5

G51IAI – Blind Searches

Depth First Search

G51IAI – Blind Searches

Depth First Search - Method

 Expand Root Node First

 Explore one branch of the tree before
exploring another branch

G51IAI – Blind Searches

Depth First Search - Implementation

 Use a queuing function that adds nodes to
the front of the queue

Function DEPTH-FIRST-SEARCH(problem) returns a

solution or failure

Return GENERAL-SEARCH(problem, ENQUEUE-AT-

FRONT)

G51IAI – Blind Searches

Depth First Search - Observations

 Space complexity
 Only needs to store the path from the root to the

leaf node as well as the unexpanded nodes

 For a state space with a branching factor of b and
a maximum depth of m, DFS requires storage of
bm nodes

 Time complexity
 bm in the worst case

G51IAI – Blind Searches

Depth First Search - Observations

 If DFS goes down a infinite branch it will not
terminate if it does not find a goal state

 If it does find a solution there may be a
better solution at a lower level in the tree

 Therefore, depth first search is neither
complete nor optimal

1 4 7

2 5 8

3 6

A

C D E FB

G H I J K L M N O P

Q R S T U V W X Y Z

The example node set

Initial state

Goal state

A

L

Press space to see a BFS of the example node set

G51IAI – Blind Searches

Depth Limited Search (vs. DFS)

G51IAI – Blind Searches

Depth Limited Search (vs. DFS)

 DFS may never terminate as it could follow a
path that has no solution on it

 DLS solves this by imposing a depth limit, at
which point the search terminates at that
particular branch

G51IAI – Blind Searches

Depth Limited Search - Observations

 Can be implemented by the general search
algorithm using operators which keep track of
the depth

 Choice of depth parameter is important

 Too deep is wasteful of time and space

 Too shallow and we may never reach a goal state

G51IAI – Blind Searches

Depth Limited Search - Observations

 Completeness

 If the depth parameter, l, is set deep enough then
we are guaranteed to find a solution if one exists

 Therefore it is complete if l>=d (d=depth of solution)

G51IAI – Blind Searches

Depth Limited Search - Observations

 Space requirements

 O(bl)

 Time requirements

 O(bl)

 DLS is not optimal

G51IAI – Blind Searches

Map of Romania

Bucharest

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Rimnicu Vilcea

Sibiu

Pitesti

Giurgui

Urziceni
Hirsova

Eforie

Vaslui

Iasi

Neamt
Odarea

Fararas

On the Romania map there

are 20 towns so any town is

reachable in 19 steps

In fact, any town is reachable

in 10 steps

G51IAI – Blind Searches

Iterative Deepening Search (vs. DLS)

G51IAI – Blind Searches

Iterative Deepening Search (vs. DLS)

 The problem with DLS is choosing a depth
parameter

 Setting a depth parameter to 19 is obviously
wasteful if using DLS

 IDS overcomes this problem by trying depth
limits of 0, 1, 2, …, n. In effect it is combining
BFS and DFS

G51IAI – Blind Searches

Iterative Deepening Search
- Observations

 IDS may seem wasteful as it is expanding the
same nodes many times

 In fact, IDS expands just 11% more nodes of
those by BFS or DLS
 If b = 10, d = 5

 N(IDS) = 123,450, N(BFS) = 100,000

 Time Complexity = O(bd)

 Space Complexity = O(bd)

G51IAI – Blind Searches

Iterative Deepening Search
- Observations

 For large search spaces, where the depth of
the solution is not known, IDS is normally the
preferred search method

 Self study

 http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

A

C D E FB

G H I J K L M N O P

Q R S T U V W X Y Z

The example node set

Initial state

Goal state

A

L

Press space to see a IDS of the example node set

AA
We begin with our initial state: the node

labeled A. This node is added to the

queue. Press space to continue

Size of Queue: 0

Nodes expanded: 0 Current Action: Expanding Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Current level: 0Nodes expanded: 1

Queue: EmptySize of Queue: 0

Press space to begin the search

As this is the 0th iteration of the search, we cannot search past any level greater than

zero. This iteration now ends, and we begin the 1st iteration.

ITERATIVE DEEPENING SEARCH PATTERN (0th ITERATION)

Node A is then expanded and removed

from the queue. Press space.

A

C D E FB

A

B C D

We again begin with our initial state: the

node labeled A. Note that the 1st iteration

carries on from the 0th, and therefore the

‘nodes expanded’ value is already set to 1.

Press space to continue

Node A is expanded, then removed from

the queue, and the revealed nodes are

added to the front . Press space.

The search now moves to level one of

the node set. Press space to continue

Node B is expanded and removed from the

queue. Press space.

Size of Queue: 0

Nodes expanded: 1 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Nodes expanded: 2

Queue: B, C, D, E, F

Press space to begin the search

Size of Queue: 5

Current level: 0Current Action: Expanding

Queue: C, D, E, FSize of Queue: 4

Nodes expanded: 3 Current level: 1Current Action: Backtracking Current level: 0Current level: 1

Queue: D, E, FSize of Queue: 3

Nodes expanded: 4 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1

Queue: E, FSize of Queue: 2

Nodes expanded: 5 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1Current Action: Expanding

Queue: F

E

Current Action: Backtracking Current level: 0Current Action: Expanding Current level: 1

Queue: Empty

F

Current level: 0Current level: 1

Press space to continue the searchPress space to continue the searchPress space to continue the search

ITERATIVE DEEPENING SEARCH PATTERN (1st ITERATION)

Size of Queue: 1Size of Queue: 0

As this is the 1st iteration of the search, we cannot search past any level greater than

level one. This iteration now ends, and we begin a 2nd iteration.

Nodes expanded: 6Nodes expanded: 7

We now back track to expand node C, and

the process continues. Press space.

A

C D E FB

G H I J K L

A

B

G

We again begin with our initial state:

the node labeled A. Note that the 2nd

iteration carries on from the 1st, and

therefore the ‘nodes expanded’ value is

already set to 7 (1+6). Press space to

continue the search

Again, we expand node A to reveal the

level one nodes. Press space.

Node A is removed from the queue and

each revealed node is added to the front of

the queue. Press space.

The search then moves to level one of

the node set. Press space to continue

Node B is expanded and the revealed

nodes added to the front of the queue.

Press space to continue.

Size of Queue: 0

Nodes expanded: 7 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Current level: 0Nodes expanded: 8

Queue: B, C, D, E, F

Current level: 1

Queue: G, H, C, D, E, F

Nodes expanded: 9 Current level: 2

ITERATIVE DEEPENING SEARCH PATTERN (2nd ITERATION)

Size of Queue: 5

Current Action: Expanding

We now move to level two of the node

set. Press space to continue.

After expanding node G we backtrack

to expand node H. The process then

continues until goal state. Press space

Queue: H, C, D, E, F

Nodes expanded: 10 Current Action: BacktrackingCurrent Action: Expanding

Queue: C, D, E, FSize of Queue: 6

Nodes expanded: 11

H

Press space to continue the search

Size of Queue: 5Size of Queue: 4

Current Action: BacktrackingCurrent Action: Expanding

Queue: I, J, D, E, FSize of Queue: 5

Nodes expanded: 12

Press space to continue the search

C

Current level: 1Current level: 2Current level: 1Current level: 0Current level: 1Current level: 2

Queue: J, D, E, FSize of Queue: 4

Nodes expanded: 13

I

Press space to continue the search

Current Action: Backtracking Current level: 1Current level: 2

Queue: D, E, F

Current Action: Expanding

Size of Queue: 3

Nodes expanded: 14

J

Press space to continue the search

Current Action: Backtracking Current level: 1Current level: 0Current level: 1Current Action: Expanding

Queue: K, L, E, FSize of Queue: 4

Nodes expanded: 15

D

Press space to continue the search

Current level: 2

Queue: L, E, FSize of Queue: 3

Nodes expanded: 16

K

Press space to continue the search

Current Action: Expanding Current level: 1Current level: 2

LLLLL

Current Action: Backtracking

Queue: EmptySize of Queue: 0

Node L is located on the second level and the search returns a solution

on its second iteration. Press space to end.

SEARCH FINISHED

G51IAI – Blind Searches

Repeated States - Three Methods

1. Do not generate a node that is the same as
the parent node
Or
Do not return to the state you have just
come from

2. Do not create paths with cycles in them. To
do this we can check each ancestor node
and refuse to create a state that is the
same as this set of nodes 1 4 7

2 5 8

3 6

G51IAI – Blind Searches

Repeated States - Three Methods

3. Do not generate any state that is the same
as any state generated before

 This requires that every state is kept in memory
(meaning a potential space complexity of O(bd))

 The three methods are shown in increasing
order of computational overhead in order to
implement them 1 4 7

2 5 8

3 6

G51IAI – Blind Searches

Blind Searches – Summary

Evaluation Breadth
First

Uniform Cost Depth First Depth
Limited

Iterative
Deepening

Time BD BD BM BL BD

Space BD BD BM BL BD

Optimal? Yes Yes No No Yes

Complete? Yes Yes No Yes, if L >= D Yes

B = Average branching factor

D = Depth of solution

M = Maximum depth of the search tree

L = Depth Limit

G51IAI – Blind Searches

Summary of Blind Search

 Blind searches (Chapter 3 AIMA)
 Breadth first

 Uniform cost

 Depth first

 Depth limited

