Introduction to Artificial Intelligence
!'_ (G511A1)

Dr Rong Qu
Blind Searches - Introduction



Aim of This Section — (2 hours)

= Introduce the blind searches on search tree

= Specifically, the “general search pseudo-code” in
AIMA and in the course notes

» Understanding these notions is crucial for this
section on search

= The pseudo-code might be difficult to follow without first
having a high-level understanding of what the algorithm is
trying to do

G51IAI — Blind Searches



i Al Techniques

= Use the relevant knowledge that people have
to solve problem

= Problem solving techniques
= Uninformed algorithms (blind search)
« Informed algorithms (heuristic search)

= Techniques in this module o
= Mainly based on tree search

G51IAI — Blind Searches ° 0



i Problem Definition - 1

= Initial State

= The initial state of the problem, defined in some
suitable manner

= Operator

= A set of actions that moves the problem from one
state to another

G51IAI — Blind Searches ° 0



i Problem Definition - 1

= Neighbourhood (by Successor Function)

=« The set of all possible states reachable from a
given state

= State Space

= The set of all states reachable from the initial
state

G51IAI — Blind Searches ° 0



i Problem Definition - 2

= Goal Test

= A test applied to a state which returns if we have
reached a state that solves the problem

= Path Cost
= How much it costs to take a particular path
Examples: TSP, nQueen (F)
ONN©
M) ()

G51IAI — Blind Searches ° 0



* Problem Definition - Example

Initial State Goal State

G51IAI — Blind Searches



i Problem Definition - Example

= States

= A description of each of the eight tiles in each
location that it can occupy.

= It is also useful to include the blank

= Operators
=« The blank moves left, right, up or down

G51IAI — Blind Searches



i Problem Definition - Example

s Goal Test

= The current state matches a certain state (e.qg.
one of the goal states shown on previous slide)

s Path Cost
= Each move of the blank costs 1

G51IAI — Blind Searches



Exercise

i — state space of 8-queen problem

Q

Q

= Initial state Q

= Operator

s States

= Goal state

G51IAI — Blind Searches



Exercise
i — state space of 8-queen problem

Q

Q Q

Q

G51IAI — Blind Searches



Exercise
i — state space of 8-queen problem

Q Q

Q Q

G51IAI — Blind Searches



i Search Trees

= A tree is a graph that:

_ is connected but becomes disconnected on
removing any edge (branch)

- has precisely one path between any two nodes

= Unique path
= Mmakes them much easier to search (7
= SO we will start with search on trees ()

G51IAI — Blind Searches ° 0



i Search Trees

= Does the following tree contain a node “I"?

= Yes. How did you know that?
= SO why the big deal about search?

G51IAI — Blind Searches



i Search Trees

= Because the graph is not given in a nice
picture “on a piece of paper”

= Instead the graph/tree is usually

= Explicitly known, but “hidden”. You need to
discover it “on the fly” i.e. as you do the search

= Implicitly known only. You are given a set of rules
with which to create the graph “on the fly”

G51IAI — Blind Searches



i Search Trees

= Does the tree under the following root
contain a node “G"? @

= All you get to see at first is the root
= and a guarantee that it is a tree

= The rest is up to you to discover during the
process of search

G51IAI — Blind Searches



i Evaluating a Search

= Does our search method actually find a
solution?

= Is it a good solution?
= Path Cost
= Search Cost (Time and Memory)

= Does it find the optimal solution?
= But what is optimal?

G51IAI — Blind Searches



i Evaluating a Search

We'll evaluate all the later search techniques
w.r.t the below 4 criteria

1. Completeness

» Is the strategy guaranteed to find a solution if one
exist?

2. Time Complexity
= How long does it take to find a solution?

G51IAI — Blind Searches



i Evaluating a Search

We'll evaluate all the later search techniques
w.r.t the below 4 criteria

3. Space Complexity

= How much memory does it take to perform the
search?

4. Optimality

= Does the strategy find the optimal solution where
there are several solutions?

G51IAI — Blind Searches



Blind Searches

G51IAI — Blind Searches



i Blind Searches - Characteristics

= Simply searches the State Space

= Can only distinguish between a goal state and
a non-goal state

x Sometimes called an uninformed search as it
has no knowledge about its domain

G51IAI — Blind Searches



Blind Searches - Characteristics

= Blind Searches have no preference as to
which state (node) that is expanded next

= The different types of blind searches are
characterised by the order in which they
expand the nodes

= This can have a dramatic effect on how well
the search performs when measured against
the four criteria we defined earlier

G51IAI — Blind Searches



i Blind Searches - implementation

Fundamental actions (operators):

1. “Expand”
Ask a node for its children

2. " Test”
Test a node to see whether it is a goal

G51IAI — Blind Searches ° 0



‘L Blind Searches - implementation

= Does the tree under the following root
contain a node “G"? @

= Allowed:
« Expand
= Jest

G51IAI — Blind Searches



i Blind Searches - implementation

We'll have 3 types of nodes during the search

= Fringe nodes
= have been discovered

= have not yet been “processed”:
1. have not yet discovered their children
2. (have not yet tested if they are a goal)

= Also called (F)
= Oopen nodes Q

G51IAI — Blind Searches ° 0



i Blind Searches - implementation

We'll have 3 types of nodes during the search

= Visited nodes
= have been discovered

= have been processed:
1. have discovered all their children
2. (have tested whether are a goal)

= Also called (F)
=« closed nodes Q

G51IAI — Blind Searches ° 0



i Blind Searches - implementation

We'll have 3 types of nodes during the search

= Undiscovered nodes
= The set of nodes that have not yet been
discovered as being reachable from the root

G51IAI — Blind Searches ° 0



Blind Searches - implementation

= Fundamental Search Ideas

= Maintain the list of fringe nodes
= Queue

= A method to expand the node
« to discover its children

= A method to pick a fringe node
= to be expanded

= Move node
= To fringe: once it's been discovered insert

= Out of fringe and into visited: after they have been processed
remove

G51IAI — Blind Searches



i Blind Searches - implementation

= Need a data structure to store the fringe

= AIMA uses a generic notion of
= Queue

= A list of nodes - general memory

= Need methods to
= add nodes : INSERT

= remove nodes : REMOVE-FIRST

G51IAI — Blind Searches



i Blind Searches - ordering of nodes

= Does the ordering of hodes matter?

= does the completeness depend on the way in
which we implement INSERT?

Each node is expanded only once, and then
removed from the fringe

Independently of the ordering, all nodes will
be expanded, and expanded only once

We assumed (implicitly) that the tree is finite

G51IAI — Blind Searches



i Blind Searches - ordering of nodes

= If search is complete, why ordering of
nodes?

» different node orderings affect the shape of the
fringe

» different shapes of the fringe can lead to very
different memory usages

G51IAI — Blind Searches



i Blind Searches - ordering of nodes

= If search is complete, why ordering of
nodes?

= The difference between searches lies in the order
in which nodes are selected for expansion

= The search always visits the first node in the
fringe queue

= The only way to control the ordering is to control
the INSERT

G51IAI — Blind Searches



i Blind Searches

= Breadth first
= Uniform cost
= Depth first

= Depth limited

= Iterative deepening

G51IAI — Blind Searches



