
Introduction to Artificial Intelligence
(G51IAI)

Dr Rong Qu

Blind Searches - Introduction

G51IAI – Blind Searches

Aim of This Section – (2 hours)

 Introduce the blind searches on search tree

 Specifically, the “general search pseudo-code” in
AIMA and in the course notes

 Understanding these notions is crucial for this
section on search

 The pseudo-code might be difficult to follow without first
having a high-level understanding of what the algorithm is
trying to do

G51IAI – Blind Searches

AI Techniques

 Use the relevant knowledge that people have
to solve problem

 Problem solving techniques
 Uninformed algorithms (blind search)

 Informed algorithms (heuristic search)

 Techniques in this module
 Mainly based on tree search

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 1

 Initial State
 The initial state of the problem, defined in some

suitable manner

 Operator
 A set of actions that moves the problem from one

state to another

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 1

 Neighbourhood (by Successor Function)
 The set of all possible states reachable from a

given state

 State Space
 The set of all states reachable from the initial

state

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 2

 Goal Test
 A test applied to a state which returns if we have

reached a state that solves the problem

 Path Cost
 How much it costs to take a particular path

Examples: TSP, nQueen

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - Example

5 4

6 1 8

7 3 2

1 2 3

8 4

7 6 5

1 2 3

4 5 6

7 8

1 4 7

2 5 8

3 6

Initial State Goal State

G51IAI – Blind Searches

Problem Definition - Example

 States
 A description of each of the eight tiles in each

location that it can occupy.

 It is also useful to include the blank

 Operators
 The blank moves left, right, up or down

G51IAI – Blind Searches

Problem Definition - Example

 Goal Test
 The current state matches a certain state (e.g.

one of the goal states shown on previous slide)

 Path Cost
 Each move of the blank costs 1

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

 Initial state

 Operator

 States

 Goal state

Q

Q Q

Q

Q

Q

Q

Q

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

Q
Q Q

Q
Q

Q
Q

Q

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

G51IAI – Blind Searches

Search Trees

 A tree is a graph that:

– is connected but becomes disconnected on
removing any edge (branch)

– has precisely one path between any two nodes

 Unique path

 makes them much easier to search

 so we will start with search on trees B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Search Trees

 Does the following tree contain a node “I”?

 Yes. How did you know that?
 so why the big deal about search?

J

B

C
D

E

F

G

A

H

I

G51IAI – Blind Searches

Search Trees

 Because the graph is not given in a nice
picture “on a piece of paper”

 Instead the graph/tree is usually

 Explicitly known, but “hidden”. You need to
discover it “on the fly” i.e. as you do the search

 Implicitly known only. You are given a set of rules
with which to create the graph “on the fly”

G51IAI – Blind Searches

Search Trees

 Does the tree under the following root
contain a node “G”?

 All you get to see at first is the root
 and a guarantee that it is a tree

 The rest is up to you to discover during the
process of search

F

G51IAI – Blind Searches

Evaluating a Search

 Does our search method actually find a
solution?

 Is it a good solution?
 Path Cost

 Search Cost (Time and Memory)

 Does it find the optimal solution?
 But what is optimal?

G51IAI – Blind Searches

Evaluating a Search

1. Completeness
 Is the strategy guaranteed to find a solution if one

exist?

2. Time Complexity
 How long does it take to find a solution?

We’ll evaluate all the later search techniques
w.r.t the below 4 criteria

G51IAI – Blind Searches

Evaluating a Search

3. Space Complexity
 How much memory does it take to perform the

search?

4. Optimality
 Does the strategy find the optimal solution where

there are several solutions?

We’ll evaluate all the later search techniques
w.r.t the below 4 criteria

G51IAI – Blind Searches

Blind Searches

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - Characteristics

 Simply searches the State Space

 Can only distinguish between a goal state and
a non-goal state

 Sometimes called an uninformed search as it
has no knowledge about its domain

G51IAI – Blind Searches

Blind Searches - Characteristics

 Blind Searches have no preference as to
which state (node) that is expanded next

 The different types of blind searches are
characterised by the order in which they
expand the nodes

 This can have a dramatic effect on how well
the search performs when measured against
the four criteria we defined earlier

G51IAI – Blind Searches

Blind Searches - implementation

Fundamental actions (operators):

1. “Expand”
Ask a node for its children

2. “Test”
Test a node to see whether it is a goal

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

 Does the tree under the following root
contain a node “G”?

 Allowed:

 Expand

 Test

F

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Fringe nodes
 have been discovered

 have not yet been “processed”:
1. have not yet discovered their children

2. (have not yet tested if they are a goal)

 Also called
 open nodes B

C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Visited nodes
 have been discovered

 have been processed:
1. have discovered all their children

2. (have tested whether are a goal)

 Also called
 closed nodes B

C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Undiscovered nodes
 The set of nodes that have not yet been

discovered as being reachable from the root

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

 Fundamental Search Ideas
 Maintain the list of fringe nodes

 Queue

 A method to expand the node
 to discover its children

 A method to pick a fringe node
 to be expanded

 Move node
 To fringe: once it’s been discovered insert

 Out of fringe and into visited: after they have been processed
remove

G51IAI – Blind Searches

Blind Searches - implementation

 Need a data structure to store the fringe

 AIMA uses a generic notion of
 Queue

 A list of nodes - general memory

 Need methods to
 add nodes : INSERT

 remove nodes : REMOVE-FIRST

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 Does the ordering of nodes matter?

 does the completeness depend on the way in
which we implement INSERT?

 Each node is expanded only once, and then
removed from the fringe

 Independently of the ordering, all nodes will
be expanded, and expanded only once

 We assumed (implicitly) that the tree is finite

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 If search is complete, why ordering of
nodes?

 different node orderings affect the shape of the

fringe

 different shapes of the fringe can lead to very
different memory usages

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 If search is complete, why ordering of
nodes?

 The difference between searches lies in the order

in which nodes are selected for expansion

 The search always visits the first node in the
fringe queue

 The only way to control the ordering is to control
the INSERT

G51IAI – Blind Searches

Blind Searches

 Breadth first

 Uniform cost

 Depth first

 Depth limited

 Iterative deepening

