
Introduction to Artificial Intelligence
(G51IAI)

Dr Rong Qu

Blind Searches - Introduction

G51IAI – Blind Searches

Aim of This Section – (2 hours)

 Introduce the blind searches on search tree

 Specifically, the “general search pseudo-code” in
AIMA and in the course notes

 Understanding these notions is crucial for this
section on search

 The pseudo-code might be difficult to follow without first
having a high-level understanding of what the algorithm is
trying to do

G51IAI – Blind Searches

AI Techniques

 Use the relevant knowledge that people have
to solve problem

 Problem solving techniques
 Uninformed algorithms (blind search)

 Informed algorithms (heuristic search)

 Techniques in this module
 Mainly based on tree search

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 1

 Initial State
 The initial state of the problem, defined in some

suitable manner

 Operator
 A set of actions that moves the problem from one

state to another

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 1

 Neighbourhood (by Successor Function)
 The set of all possible states reachable from a

given state

 State Space
 The set of all states reachable from the initial

state

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - 2

 Goal Test
 A test applied to a state which returns if we have

reached a state that solves the problem

 Path Cost
 How much it costs to take a particular path

Examples: TSP, nQueen

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Problem Definition - Example

5 4

6 1 8

7 3 2

1 2 3

8 4

7 6 5

1 2 3

4 5 6

7 8

1 4 7

2 5 8

3 6

Initial State Goal State

G51IAI – Blind Searches

Problem Definition - Example

 States
 A description of each of the eight tiles in each

location that it can occupy.

 It is also useful to include the blank

 Operators
 The blank moves left, right, up or down

G51IAI – Blind Searches

Problem Definition - Example

 Goal Test
 The current state matches a certain state (e.g.

one of the goal states shown on previous slide)

 Path Cost
 Each move of the blank costs 1

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

 Initial state

 Operator

 States

 Goal state

Q

Q Q

Q

Q

Q

Q

Q

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

Q
Q Q

Q
Q

Q
Q

Q

G51IAI – Blind Searches

Exercise
– state space of 8-queen problem

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

G51IAI – Blind Searches

Search Trees

 A tree is a graph that:

– is connected but becomes disconnected on
removing any edge (branch)

– has precisely one path between any two nodes

 Unique path

 makes them much easier to search

 so we will start with search on trees B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Search Trees

 Does the following tree contain a node “I”?

 Yes. How did you know that?
 so why the big deal about search?

J

B

C
D

E

F

G

A

H

I

G51IAI – Blind Searches

Search Trees

 Because the graph is not given in a nice
picture “on a piece of paper”

 Instead the graph/tree is usually

 Explicitly known, but “hidden”. You need to
discover it “on the fly” i.e. as you do the search

 Implicitly known only. You are given a set of rules
with which to create the graph “on the fly”

G51IAI – Blind Searches

Search Trees

 Does the tree under the following root
contain a node “G”?

 All you get to see at first is the root
 and a guarantee that it is a tree

 The rest is up to you to discover during the
process of search

F

G51IAI – Blind Searches

Evaluating a Search

 Does our search method actually find a
solution?

 Is it a good solution?
 Path Cost

 Search Cost (Time and Memory)

 Does it find the optimal solution?
 But what is optimal?

G51IAI – Blind Searches

Evaluating a Search

1. Completeness
 Is the strategy guaranteed to find a solution if one

exist?

2. Time Complexity
 How long does it take to find a solution?

We’ll evaluate all the later search techniques
w.r.t the below 4 criteria

G51IAI – Blind Searches

Evaluating a Search

3. Space Complexity
 How much memory does it take to perform the

search?

4. Optimality
 Does the strategy find the optimal solution where

there are several solutions?

We’ll evaluate all the later search techniques
w.r.t the below 4 criteria

G51IAI – Blind Searches

Blind Searches

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - Characteristics

 Simply searches the State Space

 Can only distinguish between a goal state and
a non-goal state

 Sometimes called an uninformed search as it
has no knowledge about its domain

G51IAI – Blind Searches

Blind Searches - Characteristics

 Blind Searches have no preference as to
which state (node) that is expanded next

 The different types of blind searches are
characterised by the order in which they
expand the nodes

 This can have a dramatic effect on how well
the search performs when measured against
the four criteria we defined earlier

G51IAI – Blind Searches

Blind Searches - implementation

Fundamental actions (operators):

1. “Expand”
Ask a node for its children

2. “Test”
Test a node to see whether it is a goal

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

 Does the tree under the following root
contain a node “G”?

 Allowed:

 Expand

 Test

F

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Fringe nodes
 have been discovered

 have not yet been “processed”:
1. have not yet discovered their children

2. (have not yet tested if they are a goal)

 Also called
 open nodes B

C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Visited nodes
 have been discovered

 have been processed:
1. have discovered all their children

2. (have tested whether are a goal)

 Also called
 closed nodes B

C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

We’ll have 3 types of nodes during the search

 Undiscovered nodes
 The set of nodes that have not yet been

discovered as being reachable from the root

B
C

E

F

G

A

H

I

G51IAI – Blind Searches

Blind Searches - implementation

 Fundamental Search Ideas
 Maintain the list of fringe nodes

 Queue

 A method to expand the node
 to discover its children

 A method to pick a fringe node
 to be expanded

 Move node
 To fringe: once it’s been discovered insert

 Out of fringe and into visited: after they have been processed
remove

G51IAI – Blind Searches

Blind Searches - implementation

 Need a data structure to store the fringe

 AIMA uses a generic notion of
 Queue

 A list of nodes - general memory

 Need methods to
 add nodes : INSERT

 remove nodes : REMOVE-FIRST

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 Does the ordering of nodes matter?

 does the completeness depend on the way in
which we implement INSERT?

 Each node is expanded only once, and then
removed from the fringe

 Independently of the ordering, all nodes will
be expanded, and expanded only once

 We assumed (implicitly) that the tree is finite

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 If search is complete, why ordering of
nodes?

 different node orderings affect the shape of the

fringe

 different shapes of the fringe can lead to very
different memory usages

G51IAI – Blind Searches

Blind Searches – ordering of nodes

 If search is complete, why ordering of
nodes?

 The difference between searches lies in the order

in which nodes are selected for expansion

 The search always visits the first node in the
fringe queue

 The only way to control the ordering is to control
the INSERT

G51IAI – Blind Searches

Blind Searches

 Breadth first

 Uniform cost

 Depth first

 Depth limited

 Iterative deepening

