Complexity of Breadth First Search

b: branching factor; d: depth of the search tree

- Number of nodes: $1+b+b^{2}+b^{3}+\ldots+b^{d-1}$
- Soon in your module "Mathematics in Computer Science" you'll learn to proof by induction

$$
1+b+b^{2}+\ldots+b^{d-1}<b^{d} \text { or } b^{0}+b+b^{2}+\ldots+b^{d-1}<b^{d}
$$

You can proof it informally by letting the depth $d=1,2, \ldots$ in the equation and see if it's true $(b=2)$
$\mathrm{d}=1, \mathrm{LHS}=2^{0}=1 ; \mathrm{RHS}=2^{1}=2$
$\mathrm{d}=2, \mathrm{LHS}=2^{0}+2^{1}=3 ;$ RHS $=2^{2}=4$
$d=3, \ldots$

- Therefore the upper bound of space/time complexity for BFS is b^{d}
- You won't be asked to proof the time/space complexity in your exam. What you do need to know is the complexity of BFS is exponential b^{d}

